Кибернетика - наука, изучающая общие принципы управления в объектах различной природы.

Несколько слов из истории кибернетики. Почти сто пятьдесят лет назад французский физик и математик Андре Мари Ампер закончил обширный труд - «Очерки по философии наук». В нем знаменитый ученый попытался привести в стройную систему все человеческие знания. Каждой из известных в то время наук было отведено свое место в системе. В рубрику за номером 83 Ампер поместил предполагаемую им науку, которая должна изучать способы управления обществом.

Ученый заимствовал ее название из греческого языка, в котором слово «кибернетес» означает «рулевой», «кормчий». Кибернетику Ампер сопроводил такими словами, звучащими весьма символично: «...et secura cives ut pace fruantur» («...и обеспечивает гражданам возможность наслаждаться миром»).

Долгое время после Ампера термин «кибернетика» был забыт. Но вот в 1948 году известный американский математик Норберт Винер опубликовал книгу под названием «Кибернетика, или Управление и связь в живых организмах и машинах». Она вызвала большой интерес ученых, хотя законы, которые Винер положил в основу кибернетики, были открыты и исследованы задолго до появления книги.

Таким образом, считается, что кибернетика возникла в конце 40-х гг., когда Н. Винер выдвинул идею о том, что системы управления в живых, неживых и искусственных системах обладают многими общими чертами. Установление аналогий обещало создание «общей теории управления», результаты которой могли бы использоваться в самых разнообразных системах. Идея получила подкрепление, когда появились компьютеры, способные единообразно решать самые разные задачи. Универсальность компьютерных вычислений наталкивала на справедливость гипотезы о существовании универсальных схем управления.

Эта гипотеза не выдержала проверку временем, но накопленные в кибернетике сведения о самых разных системах управления, общие принципы, которые частично все-таки удалось обнаружить, замена узкопрофессиональной точки зрения специалиста в какой-либо области на взгляд с позиции общности внешне разнородных объектов и систем принесли большую пользу.

Связь между понятиями «информатика» и «кибернетика» можно истолковать следующим образом. Суть информатики - в изучении информационных связей в различных системах, объединенных целями управления. А суть кибернетики - в изучении управления как информационного процесса.

На ранних этапах своего становления кибернетика включала в себя те задачи, которые сейчас решаются в информатике. Сегодня же общепринято, что кибернетические исследования заключаются в изучении общих свойств, присущих различным системам управления. Эти свойства могут проявляться и в живой природе, и в органическом мире, и в коллективах людей.



Основными в кибернетике являются понятия управления и информации.

Система управления (кибернетическая система) может рассматриваться как совокупность двух систем - объекта управления и управляющей системы. При этом управление есть процесс целенаправленного воздействия на объект управления, который обеспечивает требуемое поведение или работу. Из рисунка видно, что управляющая система воздействует на объект управления, подавая на него управляющие сигналы, содержащие информацию (управляющие решения) о том, как должен вести себя объект управления. Заметим, что для того, чтобы выработать управляющие решения, обеспечивающие достижение цели управления, управляющая система должна иметь информацию о состоянии внешней среды и о состоянии объекта управления. Канал (или каналы) передачи информации о состоянии внешней среды и о состоянии объекта управления носят название каналов цепей обратной связи . Наличие обратной связи, т.е. информации в ответ на сигнал, полученный управляемым объектом, является характерной особенностью всех управляющих систем.

Объект управления (будь то машина или автоматическая линия, предприятие или войсковое соединение, живая клетка, синтезирующая белок или мышца, текст, подлежащий переводу, или набор символов, преобразуемый в художественное произведение) и управляющее устройство (мозг и нервная ткань живого организма или управляющий автомат) обмениваются между собой информацией. Таким образом, процесс управления сопряжен с передачей, накоплением, хранением и переработкой информации, характеризующей управляемый объект, ход процесса, внешние условия, программу работы и т. д.

В различных системах могут быть различными по своей природе носители информации: звуковые, световые, механические, электрические, химические сигналы, документы, пленки. Однако вне зависимости от материального носителя информации процессы ее передачи подчиняются общим количественным закономерностям. Об этом вы узнаете в следующих параграфах.

Реальные системы управления отличаются большой сложностью и большим разнообразием. Они могут содержать несколько каналов управляющей информации и обратной связи. Свойства каналов и способы кодирования и переработки информации в них также отличаются большим разнообразием. По-разному формируются и управляющие решения. Тем не менее, общая модель, приведенная на рисунке, сохраняется для всех систем. Такая общность позволяет успешно описывать функционирование различных систем едиными формальными средствами. Однако выделение общих структурно-информационных свойств систем различной природы требует часто высоких профессиональных знаний в той области, которая соответствует содержательной природе исследуемых систем.

В кибернетике выделяют два основных направления исследований: теоретическую и техническую кибернетику. Теоретическая кибернетика занимается общими проблемами теории управления, вопросами передачи, защиты, хранения и использования информации в системах управления. Многие проблемы теоретической кибернетики изучаются в теоретической информатике. Специалисты, работающие в технической кибернетике, исследуют и проектируют различные технические управляющие системы, начиная от достаточно простых систем автоматического регулирования и управления до сложных автоматизированных систем управления - АСУ. В рамках технической кибернетики развивается и теория построения вычислительных машин, а также логические методы синтеза дискретных управляющих устройств. Для решения возникающих тут задач специалисты в области технической кибернетики используют модели алгебры логики, многозначных логик и теории автоматов.

Решающим в становлении кибернетики был бурный рост электронной автоматики и особенно появление быстродействующих вычислительных машин. Они открыли невиданные возможности в обработке информации и в моделировании систем управления.

На протяжении столетий трудами ученых закладывался фундамент, формировались принципиальные основы кибернетики, формировался методологический аппарат, включающий теорию информации, теорию алгоритмов, теорию вероятностей, математическую логику и многие другие разделы, как теоретической информатики, так и математики.

Выдающееся значение для ее развития имели труды К. Шеннона, Дж. Неймана, И. П. Павлова. Историки отмечают заслуги и таких выдающихся инженеров и математиков, как И. А. Вышнеградский, А. М. Ляпунов, А. Н. Колмогоров. В среде ученых считается, что в 1948 году состоялось не рождение, а крещение кибернетики - науки об управлении. Именно к этому времени с наибольшей остротой встал вопрос о повышении качества управления в нашем усложненном мире. И кибернетика дала специалистам самого разного профиля возможность применять точный научный анализ для решения проблем управления.

Сегодня достижениями кибернетики пользуются математики и физики, биологи, физиологи и психиатры, экономисты и философы, инженеры различных специальностей.

Перенос идей и моделей из одних областей в другие, общение между co6ой специалистов разного профиля на некотором едином языке кибернетики сделали свое дело. Появились кибернетические по своему духу модели в науках, доселе не знавших точных методов и расчетов. Возникли научные направления, получившие характерные названия: химическая кибернетика, юридическая кибернетика, техническая кибернетика и т.п. Все эти «кибернетики» изучают использование информации при управлении в том классе систем, который изучает соответствующая наука. Наиболее активно развивается техническая кибернетика.\ В ее состав входит теория автоматического управления, которая стала теоретическим фундаментом автоматики.

Заметное место в кибернетике занимает теория распознавания образов. Основная задача этой дисциплины - поиск решающих правил, с помощью которых можно было бы классифицировать многочисленные явления реальности, соотносить их с некоторыми эталонными классами. Распознавание образов - это пограничная наука между кибернетикой и искусственным интеллектом, так как поиск решающих правил чаще всего осуществляется путем обучения, а обучение, конечно, интеллектуальная процедура. В кибернетике выделяется даже специальная область исследований, получившая название обучение на примерах.

В последнее время объектом самого пристального изучения, самого детального исследования стал живой организм: сам человек как управляющая система высшего типа, те или иные функции которой инженеры и ученые стремятся воспроизвести в автоматах. Насколько принципы работы живых систем могут быть использованы в искусственных объектах? Ответ на этот вопрос ищут бионика и нейрокибернетика - пограничные науки между кибернетикой и биологией. Нейрокибернетика – наука, изучающая процессы переработки информации в нервной ткани животных и человека. Бионика – наука о том, как находки живой природы, реализованные в живых организмах, можно переносить в искусственные системы, создаваемые человеком.

Кибернетику также весьма интересуют равновесные состояния в различных системах и способы их достижения. Этими вопросами занимается гомеостатика, недавно возникшая и еще находящаяся в стадии оформления наука. Гомеостатика - наука о достижении равновесных состояний при наличии многих действующих одновременно факторов.

Быстро развивающиеся области кибернетики – экономическая кибернетика и социальная кибернетика, изучающие, соответственно, процессы управления, протекающие в экономике и человеческом обществе.

Кибернетику иногда рассматривают как прикладную информатику в области создания и использования автоматических или автоматизированных систем управления разной степени сложности, от управления отдельным объектом (станком, промышленной установкой, автомобилем и т. п.) до сложнейших систем управления целыми отраслями промышленности, банковскими системами, системами связи и даже сообществами людей.

Киберне́тика - наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.

Термин «кибернетика» изначально ввел в научный оборот Ампер, который в своем фундаментальном труде «Опыт о философии наук» (1834-1843) определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. А в современном понимании - как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, впервые был предложен Норбертом Винером в 1948 году.

Она включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.

Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.

Более философское определение кибернетики, предложенное в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, описывает кибернетику как «искусство обеспечения эффективности действия». Новое определение было предложено Льюисом Кауфманом (англ.): «Кибернетика - исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.

Современная кибернетика зарождалась как междисциплинарные исследования, объединяя области систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н. конференциях Мэйси (англ.).

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием, - теория управления, теория игр, теория систем (математический эквивалент кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. XX века этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники.

Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:

    Теория передачи сигналов

    Теория управления

    Теория автоматов

    Теория принятия решений

    Синергетика

    Теория алгоритмов

    Распознавание образов

    Теория оптимального управления

    Теория обучающихся систем

Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.

Особенно велика роль кибернетики в психологии труда и таких ее отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика - наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем - от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма. Управление - это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего. Оптимальное управление - это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии. Сложная динамическая система - это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.

План

2. Кибернетика в научной картине мира

3. Основные принципы и законы кибернетики

Заключение

Список использованной литературы

Введение

Кибернетика - наука об общих закономерностях процессов управления и передачи информации в технических, биологических и социальных системах. Она является одной из самых молодых и важных для современного человечества наук. Её основателем является американский математик Норберт Винер (1894-1964), выпустивший в 1948 году книгу «Кибернетика, или управление их связь в животном и машине». Своё название новая наука получила от древнегреческого слова «кибернетес», что в переводе означает «управляющий», «рулевой», «кормчий». Она возникла на стыке математики, теории информации, техники и нейрофизиологии, ее интересовал широкий класс, как живых, так и неживых систем.

Место кибернетики в современной науке можно определить внутри математики, аппаратом которой кибернетики пользуются для описания процессов регуляции. Н. Винер, создавая свою первую книгу о кибернетике, использовал простые математические формулы и доступные примеры из природы для описания кибернетических законов. После того, как кибернетика была принята учёными мира и стала исследоваться независимо от автора, Н. Винер, на правах первооткрывателя новой области знания, начал писать о роли кибернетики в жизни общества, и более конкретно, о роли автоматов в судьбе человеческого рода.

Кибернетика довольно быстро породила дочернюю науку, информатику, нужда в которой возникла в результате неудержимого роста потребности экономики в вычислительных машинах и такого же роста мощности последних. Современное понятие информации, к которому также был причастен Н. Винер, вошло в повседневность. Современное использование законов кибернетики сугубо прагматично и утилитарно, но начинается оно с изучения и освоения законов, описанных ещё Н. Винером.

Кибернетика - это фундаментальный труд, который описывает главные понятия и принципы управления информации. Изучением процессов управления в природе, обществе и технике и занимается наука кибернетика.

1. Кибернетика как наука, основные понятия кибернетики

Кибернетика - наука об общих закономерностях процессов управления и передачи информации в технических, биологических и социальных системах. Термином «кибернетика» 2500 лет назад древнегреческий философ Платон называл «искусством управления кораблем». В начале XIX в. французский физик и математик А.М. Ампер называл кибернетику наукой об управлении государством. Кибернетика возникла в 40-х гг. XX в. в результате насущной практической потребности в повышении качества управления в производственно-технической, хозяйственной, политической, военной и других областях человеческой деятельности. Её основателем является американский математик Н. Винер (1894-1964), выпустивший в 1948 году книгу «Кибернетика, или управление их связь в животном и машине». Она возникла на стыке математики, теории информации, техники и нейрофизиологии, ее интересовал широкий класс, как живых, так и неживых систем. В Советском Союзе разработками в этой области занимались И. Полетаев, М. Цетлин, В. Глушков, А. Берг, И. Петровский и другие.

Со сложными системами управления человек имел дело задолго до кибернетики (управление людьми, машинами; наблюдал регуляционные процессы у живых организмов). Но кибернетика выделила общие закономерности управления в различных процессах и системах, а не их специфику. В «докибернетический» период знания об управлении и организации носили «локальный» характер, т. е. в отдельных областях. Так, еще в 1843 г. польский мыслитель Б. Трентовский опубликовал малоизвестную в настоящее время книгу «Отношении философии к кибернетике как искусству управления народом». В своей книге «Опыт философских наук» в 1834 году известный физик А.М. Ампер дал классификацию наук, среди которых третьей по счету стоит кибернетика - наука о текущей политике и практическом управлении государством (обществом).

В общую кибернетику обычно включают теорию информации, теорию алгоритмов, теорию игр и теорию автоматов, техническую кибернетику. В кибернетике можно выделить ряд научных направлений:

Теоретическая кибернетика занимается общими проблемами теории управления, теории информации, вопросами передачи, защиты, хранения и использования информации в системах управления. Многие проблемы теоретической кибернетики изучаются в теоретической информатике.

Техническая Кибернетика - отрасль науки, изучающая технические системы управления. Важнейшие направления исследований разработка и создание автоматических и автоматизированных систем управления, а также автоматических устройств и комплексов для передачи, переработки и хранения информации.

Биологическая кибернетика применяет идеи и методы кибернетики в биологии и медицине. Особое место в этом направлении исследований играет нейрокибернетика, изучающая процессы переработки информации в нервной ткани животных и человека, а также бионика - наука о том, как находки живой природы, реализованные в живых организмах, можно переносить в искусственные системы, создаваемые человеком.

Гомеостатика - наука о достижении равновесных состояний - при наличии многих действующих одновременно факторов связывает модели биологической кибернетики и технической кибернетики. Кибернетику интересует равновесные состояния в таких системах и способы их достижения.

Экономическая кибернетика - изучает процессы управления, протекающие в экономике. Социальная кибернетика изучает процессы управления, протекающие в человеческом обществе. Это направление кибернетики тесно смыкается с социальной психологией.

К основным задачам кибернетики относятся: 1) установление фактов, общих для управляемых систем или для некоторых их совокупностей; 2) выявление ограничений, свойственных управляемым системам и установление их происхождения; 3) нахождение общих законов, которым подчиняются управляемые системы; 4) определение путей практического использования установленных фактов и найденных закономерностей.

Основные понятия кибернетики: управление, управляющая система, управляемая система, организация, обратная связь, алгоритм, модель, оптимизация, сигнал, «черный ящик» и др. Управление - это воздействие на объект, выбранное на основании имеющейся для этого информации из множества возможных воздействий, улучшающее его функционирование или развитие. У управляемых систем всегда существует некоторое множество возможных изменений, из которого производится выбор предпочтительного изменения. Если у системы нет выбора, то не может быть и речи об управлении.

Управление - это вызов изменений в системе или перевод системы из одного состояния в другое в соответствии с объективно существующей или выбранной целью. Управлять - это и предвидеть те изменения, которые произойдут в системе после подачи управляющего воздействия (сигнала, несущего информацию). Всякая система управления рассматривается как единство управляющей системы (субъекта управления) и управляемой системы - объекта управления. Управление системой или объектом всегда происходит в какой-то внешней среде. Поведение любой управляемой системы всегда изучается с учетом ее связей с окружающей средой. Поскольку все объекты, явления и процессы взаимосвязаны и влияют друг на друга, то, выделяя какой-либо объект, необходимо учитывать влияние среды на этот объект и наоборот. Свойством управляемости может обладать не любая система. Необходимым условием наличия в системе хотя бы потенциальных возможностей управления является ее организованность.

Чтобы управление могло функционировать, то есть целенаправленно изменять объект, оно должно содержать четыре необходимых элемента: 1. каналы сбора информации о состоянии среды и объекта; 2. канал воздействия на объект; 3. цель управления. 4. способ (алгоритм, правило) управления, указывающий, каким образом можно достичь поставленной цели, располагая информацией о состоянии среды и объекта.

В кибернетике впервые было сформулировано понятие «черного ящика» как устройство, по словам Н. Винера, «которое выполняет определенную операцию над настоящим и прошлым входного потенциала, но для которого не обязательно располагать информацией о структуре, обеспечивающей выполнение этой операции».

Понятие цели и целенаправленность. Основатель кибернетики Н. Винер писал, что «действие или поведение допускает истолкование как направленность на достижение некоторой цели, т. е. некоторого конечного состояния, при котором объект вступает в определенную связь в пространстве и во времени с некоторым другим объектом или событием».

Цель определяется как внешней средой, так и внутренними потребностями субъекта управления. Цель должна быть принципиально достижимой, она должна соответствовать реальной ситуации и возможностям системы (управляющей и управляемой). За счет управляющих воздействий управляемая система может целенаправленно изменять свое поведение. Целенаправленность управления биологических управляемых систем сформирована в процессе эволюционного развития живой природы. Она означает стремление организмов к их выживанию и размножению. Целенаправленность искусственных управляемых систем определяется их разработчиками и пользователями.

Понятие обратной связи. Управление по «принципу обратной связи». Принцип обратной связи характеризует информационную и пространственно-временную зависимость в кибернетической системе. В широком смысле понятие обратной связи, по словам Н. Винера, «означает, что часть выходной энергии аппарата или машины возвращается как вход. В узком смысле для обозначения того, что поведение объекта управляется величиной ошибки в положении объекта по отношению к некоторой специфической цели. В этом случае обратная связь отрицательна, т.е. сигналы от цели используются для ограничения выходов, которые в противном случае шли бы дальше цели». Если поведение системы усиливает внешнее воздействие, то имеем дело с положительной обратной связью, а если уменьшает, - то с отрицательной обратной связью. Особый случай - гомеостатические обратные связи, которые сводят внешнее воздействие к нулю (например, температура тела человека, которая остается постоянной благодаря гомеостатическим обратным связям). Понятие обратной связи имеет отношение к цели управления. Поведение объекта управляется величиной ошибки в положении объекта по отношению к стоящей цели.

от греч. ??????????? (?????) – искусство управления, от???????? – правлю рулем, управляю ] – наука о процессах управления в сложных динамич. системах, основывающаяся на теоретич. фундаменте математики и логики, а также на применении средств автоматики, особенно электронных вычислит., управляющих и информационно-логич. машин. Возникновение К. Элементарными методами, именуемыми в наше время кибернетическими, человечество эмпирически пользовалось издавна – во всех: тех случаях, когда необходимо было управлять к.-л. сложным развивающимся процессом для достижения определ. цели в заданное время. По мере усложнения производственно-технич. процессов, роста взаимодействия множества людей, участвующих в хозяйственной, политич. и воен. деятельности, вовлечения в нее большого количества материальных средств и энергетич. ресурсов все чаще стало давать себя знать противоречие между потребностями улучшения управления, к-рое должно было становиться все более оперативным, основанным на достаточной и своевременно поступающей информации, и реальными возможностями такого улучшения. С наибольшей остротой вопрос о повышении качества управления встал начиная с 40-х гг. 20 в. Это и привело к возникновению К., к-рая открыла дорогу применению точного научного анализа к решению проблемы целесообразного использования соврем. технич. средств для повышения качества управления. К. базируется на достижениях ряда отраслей соврем. науки и техники и, в свою очередь, благотворно влияет на их развитие. Ее возникновение тесно связано, с одной стороны, с работами по созданию сложных автоматич. устройств, а с др. – с развитием наук, изучающих процессы управления и обработки информации в конкретных областях действительности. В подготовке и развитии К. сыграли роль многие области знания: теорий автоматич. регулирования и следящих систем; термодинамика; статистич. теория передачи сообщений; теория игр и оптимальных решений; математич. логика; математич. экономика и др., а также комплекс биологич. наук, изучающих процессы управления в живой природе (теория рефлексов, генетика и др.). Решающую роль в становлении К. имело развитие электронной автоматики и появление быстродействующих электронных вычислит. машин, открывших новые возможности в обработке информации и в моделировании различных систем управления. Осн. идеи К., как особой дисциплины, являющейся синтезом целого ряда направлений научной и технич. мысли, были сформулированы в 1948 Н. Винером в кн. "Cybernetics or control and communication in the animal and the machine", N. Y. (рус. пер. "Кибернетика, или управление и связь в животном и машине", М., 1958). Выдающееся значение для создания К. имели труды К. Шеннона и Дж. Неймана. Еще раньше важную роль в генезисе идей К. сыграли амер. ученый Дж. У. Гиббс и И. П. Павлов. Следует отметить заслуги рус. и сов. школ математиков и инженеров (И. А. Вышнеградской, А. М. Ляпунов, А. А. Андронов, Б. В. Булгаков, А. Н. Колмогоров и др.), к-рые способствовали становлению и развитию К. Предмет К. Предметом изучения К. являются сложные устойчивые динамич. системы управления. Под динамической понимается такая система, состояние к-рой меняется и к-рая содержит в себе множество более простых, взаимосвязанных и взаимодействующих друг с другом систем и элементов. Состояние сложной динамич. системы в целом, так же как и отдельных ее элементов, определяется значениями, к-рые принимают параметры, характеризующие систему и меняющиеся по различным закономерностям. Сложная динамич. система, рассматриваемая с т. зр. процессов и операций управления, т.е. процессов и операций, переводящих ее из одного состояния в другое и обеспечивающих ее устойчивость, наз. системой управления. Всякая система управления (система управления артиллерийским огнем; система управления нар. х-вом, отраслью пром-сти, предприятием, транспортным х-вом и т.д.; система управления кровообращением, пищеварением и т.п. живого организма) состоит из двух систем: управляющей и управляемой. Управляющая система воздействует на параметры управляемой системы с целью перевода ее в новое состояние в соответствии с имеющейся задачей управления. Следует различать три осн. области управления: управление системами машин, производств. процессами и вообще процессами, имеющими место при целенаправл. воздействии человека на предметы труда и процессы природы; управление организов. деятельностью человеч. коллективов, решающих ту или иную задачу (напр., организаций, осуществляющих военные, финансовые, кредитные, страховые, торговые, транспортные и др. операции); управление процессами, происходящими в живых организмах (сюда относятся высокоцелесообразные физиологич., биохимич. и биофизич. процессы, связанные с жизнедеятельностью организма и направленные на его сохранение в изменяющихся условиях существования). Во всех указанных областях имеются устойчивые динамические системы, в которых самопроизвольно или же принудительно осуществляются процессы управления; при этом часто имеют место сложные взаимодействия управляющих и управляемых систем. Примером могут служить живые организмы, в к-рых функции управляющих и управляемых систем непрерывно и многократно переплетаются. То общее, что имеется в процессах управления в самых различных областях, независимо от их физич. природы, и составляет предмет К.; сами же эти области выступают как сферы применения К. Правомерность существования К. как науки обусловлена универсальностью процессов управления, создание единой теории к-рых является ее главной задачей. Хотя К. занимается изучением сложных развивающихся процессов различной природы, она исследует их только с т. зр. механизма управления. Ее не интересуют проявляющиеся при этом энергетич. соотношения, экономич., эстетич., общественная сторона явлений. Взаимосвязи управляющих и управляемых систем в К. изучаются лишь в той мере, в какой они допускают выражение средствами математики и логики. При этом в К. ставится задача выработать рекомендации по наилучшим приемам и методам управления для быстрейшего достижения поставленной цели. К. изучает процессы управления прежде всего с целью повышения эффективности человеч. деятельности. К. можно подразделить на теоретич. К. (математич. и логич. основы, а также филос. вопросы К.), технич. К. (конструирование и эксплуатация технич. средств, применяемых в управляющих и вычислит. устройствах) и прикладную К. (приложения теоретич. и технич. К. к решению задач, относящихся к конкретным системам управления в различных областях человеч. деятельности, – в пром-сти, в энергоснабжении, на транспорте, в службе связи и т.п.). Т.о., К. – это наука об общих принципах управления, о средствах управления и об использовании их в технике, в человеч. об-ве и в живых организмах. Основные понятия и разделы т е о р е т и ч е с к о й К. Для любых процессов управления характерно наличие: системы, состоящей из управляемой и управляющей частей; цели управления; алгоритма управления; взаимодействия данной системы управления с внешней средой, являющейся источником случайных или систематич. помех, а также осуществление управления на основе приема и передачи информации. Системы, в к-рых процессы управления обеспечивают их устойчивость в меняющихся условиях внешней среды, наз. устойчивыми динамич. системами управления, или организованными системами. Наличие цели – характерная черта любого процесса управления; управление – это организация целенаправленного (целесо-образного) воздействия. Задача (цель) либо ставится в самом начале управления, либо вырабатывается в процессе управления. В общем случае целью управления является приспособление данной динамич. системы к внешним условиям, необходимое для ее существования или для выполнения свойственных ей функций. Управление всегда осуществляется на основе приема, сохранения, передачи и переработки информации в условиях взаимодействия данной динамич. системы с внешней средой. Процесс функционирования системы управления (процесс управления) в общем случае осуществляется по след. схеме. Управление начинается со сбора информации о ходе процесса, подлежащего управлению (об управляемой системе); эта информация преобразуется в удобный для передачи по каналам связи вид и поступает в управляющую систему (напр., человеч. мозг или управляющую машину). Используя определ. правила или возможности, управляющая система перерабатывает получаемую информацию в соответствии со стоящими перед ней задачами, в результате чего вырабатываются команды управления; последние передаются в исполнит. механизмы или органы и, воздействуя на параметры управляемой системы, изменяют ее состояние. Весьма важным, характерным для всех сложных случаев управления, является использование обратных связей. Сущность обратной связи состоит в том, что от исполнит. органов (органов управляемой системы) к управляющим органам по особым каналам связи (наз. каналами обратной связи) передается информация о фактич. положении этих органов и о наличии внешних воздействий; эта информация используется управляющими органами для выработки команд управления. Обратные связи в передаче информации позволяют учитывать управляющей системой фактич. состояние органов управляемой системы, а также воздействия на нее внешней среды. Понятие информации является одним из основных в К., а теория информации занимает существенное место в комплексе дисциплин, составляющих теоретич. фундамент К. Больше того, К. часто вообще характеризуют как науку о способах восприятия, передачи, хранения, переработки и использования информации в машинах, живых организмах и их объединениях. Передача информации осуществляется при помощи сигналов – физич. процессов, у к-рых определ. параметры находятся в определенном (обычно однозначном) соответствии с передаваемой информацией. Установление такого соответствия наз. кодированием. Хотя на передачу сигналов расходуется энергия, количество ее в общем случае не связано с количеством, а тем более с содержанием передаваемой информации. В этом состоит одна из принципиальных особенностей процессов управления: управление большими потоками энергии может осуществляться при помощи сигналов, требующих для своей передачи незначит. количества энергии. Получившая в наст. время широкое развитие т. н. статистич. теория информации возникла из потребностей техники связи и указывает пути повышения пропускной способности и помехоустойчивости каналов передачи информации. Главной задачей этой теории является определение меры количества информации в сообщениях в зависимости от вероятности их появления. Редким сообщениям приписывается большее количество информации, а частым – меньшее; количество информации в сообщении измеряется изменением в степени неопределенности ожидания нек-рого события до и после получения сообщения о нем. Статистич. теория информации имеет фундаментальное науч. значение, далеко выходящее за пределы теории связи. Установлена глубокая аналогия и связь между понятием энтропии в статистич. физике и статистич. мерой количества информации. Энтропия любой физич. системы может рассматриваться как мера недостатка информации в данной системе. С увеличением энтропии системы количество информации уменьшается, и наоборот. В связи с этим представляется возможным подойти с количеств. стороны к оценке информации, содержащейся в физич. законах, к информации, получаемой при физич. экспериментах, и т.д. Статистич. теория информации позволяет также получить общее определение понятия о р г а н и з а ц и и и количеств. меру для оценки степени организации любой системы. Именно, степень организации измеряется тем количеством информации, к-рое нужно ввести в систему, чтобы перевести ее из начального беспорядочного состояния в заданное организованное состояние. Однако в статистич. теории информации не учитывается смысл и ценность передаваемых сообщений, а также возможность дальнейшего использования полученной информации. Эти вопросы составляют предмет др. науч. направления – семантич. теории информации, к-рая находится в стадии становления. Семантич. теория информации занимается изучением сущности процессов выработки информации живыми организмами, исследованием возможностей и методов автоматич. опознавания образов, классификацией информации, изучением процессов выработки понятий и т.п. Вопросы, относящиеся к области этой теории, приобретают значение в связи с работами по моделированию процессов накопления "опыта" и опознавания образов, свойственных живым организмам, с помощью как электронных программно-управляемых машин универс. назначения, так и спец. устройств. К числу дисциплин, составляющих теоретич. основу К., помимо теории информации, относятся: теория программирования, теория алгоритмов, теория управляющих систем, теория автоматов и нек-рые др. Теория программирования в широком смысле может рассматриваться как теория методов управления. Она исследует способы использования информации с целью определения линии поведения (программы) управляющих систем в зависимости от конкретной обстановки. Способность в той или иной степени оценивать обстановку и вырабатывать нек-рую программу поведения – вырабатывать решения, приводящие к достижению нек-рой цели, – присуща любым системам управления, как естественным (системы живой природы), так и искусственным (технич. устройства). По своему характеру процессы выработки решений весьма многообразны. Они могут осуществляться, напр., в виде случайного выбора решения, в виде выбора по аналогии, путем логич. анализа и т.д. В К. для анализа систем управления широко используются математич. методы выработки оптимальных (т. е. наилучших в к.-л. отношении) решений, таких, как линейное и динамич. программирование, статистич. методы нахождения оптимальных решений и методы теории игр. После того как определена общая линия поведения системы, необходимо выяснить, какие конкретные шаги и в какой последовательности нужно осуществить, для того чтобы достигнуть поставленной цели. При решении этой задачи используются средства теории алгоритмов. Следующий круг вопросов; относящихся к методике управления, связан с исследованием возможностей реализации выработанных решений и алгоритмов в системах, обладающих определ. свойствами; он составляет сферу общей теории программирования. Теория программирования в узком смысле этого слова занимается разработкой методов автоматизации процессов переработки информации и способов представления различных алгоритмов в форме, необходимой для их реализации на электронных программно-управляемых машинах. Одна из осн. задач К. – сравнит. анализ и выявление общих закономерностей процессов переработки информации и управления, происходящих в естеств. и искусств. системах. К. выделяет следующие осн. классы таких процессов: мышление; рефлекторная деятельность живых организмов; изменение наследств. информации в процессе биологич. эволюции; переработка информации в различных автоматич., экономич. и административных системах, а также в науке. Общее описание управляющих систем, их взаимодействия с управляемыми системами, а также разработка методов построения управляющих систем составляют задачу теории управляющих систем. Примерами управляющих систем, на основе изучения к-рых строится эта теория, могут служить: нервная система животного, программно-управляемые вычислит. машины, системы управления технологич. процессами и др. Большую роль в теории управляющих систем играет рассмотрение абстрактных систем управления, представляющих собой математич. схемы (модели), сохраняющие информац. свойства соответств. реальных систем. В рамках К. возникла спец. логико-математич. дисциплина – теория автоматов, изучающая важный класс абстрактных автоматов, т.н. дискретные автоматы, т.е. системы, в к-рых перерабатываемая информация выражается квантованными сигналами, множество к-рых конечно. Значит. место в теории автоматов занимает логико-математич. анализ т. н. нервных (или нейронных) сетей, моделирующих функциональные элементы мозга. Важным свойством сложных систем управления является иерархичность управления, к-рая состоит в том, что для реализации нек-рой функции управления строится ряд механизмов (или алгоритмов) с последовательно возрастающими уровнями управления. Непосредств. управление исполнит. органами осуществляет гл. обр. механизм управления низшего уровня. Работу этого механизма контролирует механизм 2-го уровня, к-рый сам контролируется механизмом 3-го уровня и т.д. Сочетание принципа иерархичности управления с принципом обратной связи придает системам управления свойство устойчивости, состоящее в том, что система автоматически находит оптимальные состояния при довольно широком круге изменений внешней обстановки. Эти принципы обеспечивают приспособляемость систем управления к изменяющимся условиям и лежат в основе биологич. эволюции, процессов обучения и приобретения опыта живыми организмами в течение их жизни; постепенная выработка условных рефлексов и их наслаивание являются не чем иным, как повышением уровней управления в нервной системе животного. Принципы иерархичности управления и обратной связи используются также при построении сложных управляющих систем в технике. При изучении систем управления возникают два рода вопросов: один из них относится к анализу структуры системы управления и определению алгоритма, реализуемого ее управляющими органами; другой – к синтезу (из данных элементов) системы, обеспечивающей выполнение заданного алгоритма. Общими требованиями, к-рыми руководствуются при этом, являются обеспечение заданного быстродействия системы, точности работы, минимального количества элементов и надежности функционирования системы. Весьма плодотворным при исследовании структуры систем управления, в т.ч. экономич. систем, военных или административных организаций, является метод их математич. моделирования. Он состоит в представлении исследуемого процесса в виде системы уравнений и логич. условий. Общий алгоритм (система уравнений) моделирования любого процесса включает в себя, как правило, две осн. части: одна часть описывает работу исследуемой системы управления (или управляющего алгоритма, если изучается к.-л. новый управляющий алгоритм), а вторая часть описывает (моделирует) внешнюю обстановку. Повторяя многократно процесс решения системы уравнений при ее различных характеристиках, можно изучить закономерности моделируемого процесса, оценить влияние отд. параметров на его протекание и выбрать их оптимальные значения. Кроме математич. моделирования, в К. применяются и др. виды моделирования, сущность к-рых сводится к замене изучаемой системы изоморфной ей системой (см. Изоморфизм), к-рую удобнее воспроизвести и изучить в лабораторных условиях. Особый интерес с т. зр. К. представляют самоорганизующиеся системы управления, обладающие свойством самостоятельно переходить из произвольных начальных состояний в определ. устойчивые состояния. Состояние таких систем изменяется под влиянием внешних воздействий случайным образом, но благодаря спец. регулирующим механизмам высших уровней эти системы отбирают наиболее устойчивые состояния, соответствующие характеру внешних воздействий. Свойство самоорганизации может проявляться только у систем, обладающих определ. степенью сложности, в частности избыточностью структурных элементов, а также случайными, меняющимися в результате взаимодействия с внешней средой, связями между нек-рыми из них. К таким системам относятся, напр., сети нейронов мозга, нек-рые типы колоний живых организмов, искусств. самоорганизующиеся электронные системы, а также нек-рые типы сложных экономич. и адм. объединений. По своим теоретич. методам К. является математич. наукой, широко использующей аналогии и моделирование. А. Н. Колмогоровым выдвинута более широкая трактовка теоретич. К., охватывающая не только математич. теорию процессов управления, но и систематич. изучение различных физич. принципов работы систем управления с т. зр. их способности нести и перерабатывать информацию. При этом в К. включается рассмотрение таких, напр., вопросов, как зависимость предельного быстродействия систем управления от их размеров, обусловленная конечностью скорости распространения света, ограничения возможностей систем малых размеров в однозначной переработке информации, связанные с проявлением законов квантовой физики, и т.п. Такой подход открывает широкие возможности дальнейшего развития К. Значение К. для науки и т е х н и к и. Значение К. для научно-технич. прогресса определяется возросшими в наст. время требованиями к точности и быстродействию систем управления, а также усложнением самих процессов управления и связано прежде всего с созданием и внедрением электронных вычислит. машин. Эти машины работают по заранее составленным программам, способны выполнять сотни тысяч и миллионы арифметич. и логич. операций в секунду и обладают запоминающими устройствами для хранения многих миллионов чисел. Можно выделить две осн. области применения К. в технике: 1) для управления машинами и комплексами машин в промышленности, на транспорте, в военном деле и т.д.; 2) применение средств К., особенно вычислит. машин, для выполнения трудоемких расчетов и моделирования различных динамич. процессов. Наиболее яркий пример – применение электронных машин для расчетов траекторий движения искусств. спутников земли, межконтинентальных и космич. ракет и др. Применение электронных машин в области науч. и технич. исследований и разработок позволяет во мн. случаях сократить эксперимент. исследования и натурные испытания, что приводит к значит. экономии материальных средств и времени при решении науч. проблем и создании новой техники. Большие перспективы для повышения производительности науч. работы имеет проблема непосредств. взаимодействия человека и информац. машины в процессе творч. мышления при решении науч. задач. Науч. творчество включает в себя значит. работу по подбору информации, ее обобщению и представлению в форме, удобной для анализа и выводов. Такая работа вполне может выполняться машиной в соответствии с запросами и указаниями человека. Вычислит, машины уже находят практич. применение в области автоматизации научно-информационной работы и перевода иностр. текстов. Эти машины имеют особенное значение в связи с ростом объема науч. и др. литературы. В силу характера К., как науки о закономерностях процессов, протекающих в системах управления самой различной природы, она развивается в тесной связи с целым рядом др. областей знания. Применение результатов и методов К., использование электронных вычислит. машин уже показали свою плодотворность в биологич. науках (в физиологии, генетике и др.), в химии, психологии и т.д. Идеи и средства К. и математич. логики, будучи примененными к изучению языка, породили новое науч. направление – лингвистику математическую, являющуюся основой для работ в области автоматизации перевода с одного языка на другой и играющую важную роль в разработке информационно-логич. машин для различных областей знания. С др. стороны, фактич. материал наук, имеющих дело с реальными системами управления и переработки информации, а также возникшие в этих науках проблемы являются источником дальнейшего развития К. как в ее теоретическом, так и в связанном с техникой аспектах. Так, за последние годы возникла новая область технической К. – б и о н и к а, занимающаяся изучением систем управления и чувствит. органов живых организмов с целью использования их принципов для создания технич. устройств. Разработка подобных систем, в свою очередь, позволяет более глубоко подойти к пониманию процессов, происходящих в системах управления живой природы. В качестве примера можно указать на изучение структуры мозга, обладающего исключит. надежностью. Выход из строя довольно значит. участков мозга в результате операций иногда не приводит к потере к.-л. функций за счет своеобразной их компенсации др. участками. Это свойство представляет большой интерес для техники. С филос. т. зр. большое значение имеет то, что К., особенно такие ее разделы, как теория самоорганизующихся систем, теория автоматов, теория алгоритмов и др., а также развившиеся в рамках К. методы моделирования способствуют более глубокому изучению систем управления живых организмов, раскрытию закономерностей функционирования нервной системы животных и человека, познанию характера взаимодействия между организмом и внешней средой, изучению механизмов мышления; особенно большое научное и практич. значение имеет исследование с кибернетич. т. зр. деятельности головного мозга человека, к-рый обеспечивает возможность восприятия и переработки огромного количества информации в органах малого объема с ничтожной затратой энергии. Этот комплекс проблем является источником важных идей К., в частности, идей, относящихся к путям создания новых автоматич. устройств и вычислит. машин. Методика применения К. в нейрофизиологии в общих чертах такова. На основе эксперимент. исследования, данных физиологии и результатов К. строится рабочая гипотеза о нек-рых механизмах работы головного мозга. Правильность и полнота этой гипотезы проверяются при помощи моделирования; в универсальную вычислит. машину (или спец. автоматич. устройство) вводится программа, выражающая эту гипотезу; анализ работы машины показывает, насколько полным и точным было содержавшееся в гипотезе представление об изучаемых механизмах мозга. Если эти механизмы изучены неполно и гипотеза несовершенна, то машина не будет обнаруживать (т.е. моделировать) тех процессов, к-рые пытаются в ней воспроизвести. В этом случае анализ работы кибернетич. модели может привести к выявлению дефектов гипотезы и к постановке новой серии экспериментов; на основе последних выдвигается новая гипотеза и строится более совершенная модель и т.д., пока не удастся построить автомат, достаточно хорошо моделирующий изучаемые нервно-физиологич. процессы; осуществление такого автомата подтверждает справедливость представлений, составляющих гипотезу. Такой способ исследования, с одной стороны, приводит к созданию новых, более сложных автоматов (программ), а с другой – к более полному выявлению механизмов работы головного мозга. В частности, применение его показало, что возможно дать анализ сложных форм функционирования головного мозга на основе относительно простых принципов. На этом пути удалось, напр., найти подход к анализу способности головного мозга решать сложные проблемы (и создать специальные автоматы, моделирующие решение этих проблем); достигнуть успехов в изучении проблем обучения и самообучения и т.д. Для изучения проблемы обучения и создания самообучающихся систем большое значение приобретает использование принципов выработки условных рефлексов и вообще методов изучения головного мозга, разработанных И. П. Павловым. Эти методы помогают в решении проблемы отбора из всей поступающей в управляющую систему информации той ее части, к-рая имеет достоверный и полезный для данной системы характер, а также в решении проблемы сокращения числа пробных взаимодействий с внешней средой и в др. вопросах. С проблемами этого рода тесно связаны работы по изучению принципов оптимальной организации поисковых действий в неизвестной среде и исследования по выявлению методов оптимального управления сложными системами. Для более глубокого анализа нек-рых сложных форм работы мозга большое значение имеют исследования по созданию машин, способных опознавать образы, и особенно машин, способных обучаться такому опознаванию; эти исследования непосредственно связаны с работами по конструированию автоматов, могущих воспринимать человеч. речь и "читать" печатный текст. Следует отметить также кибернетич. модели "черепах", "мышей" и т.д., действиям к-рых придается внешнее сходство с поведением животных; эти модели приобретают научную ценность в том случае, если преследуют цель проверки к.-л. научных гипотез. Большое значение для исследования принципов управления и переработки информации в головном мозге имеет разработка теории нервных сетей, в создании к-рой большую роль сыграли У. Мак-Каллок и В. Питс. В основе деятельности мозга лежит функционирование сложных систем особым образом соединенных между собой нейронов; в этих системах проявляются закономерности, отсутствующие в работе отд. нейронов или относительно простых их групп. Изучение таких систем связано с большими трудностями, для преодоления к-рых приходится сочетать эксперимент. исследования с использованием метода моделирования и абстрактно-математич. способа рассмотрения, в частности аппарата совр. логики. Значение теории нервных сетей состоит в том, что, эта теория служит источником рабочих гипотез, к-рые проверяются на экспериментальном нейро-физиологич. материале. В случае, если анализу подлежат сложные формы деятельности мозга (обучение, узнавание образов и т.п.), средств одной лишь теории нервных сетей оказывается недостаточно; поэтому приходится начинать с изучения системы правил переработки информации, лежащих в основе изучаемых форм деятельности мозга, и лишь потом создавать гипотезы о структуре реализующей их нервной сети и строить ее логико-математич. модели. Большой интерес для нейрофизиологии представляет разработка моделей, включающих случайным образом соединенные между собой элементы и способных в процессе работы самоорганизовываться и приобретать целесообразное поведение, а также изучение различных форм кодирования информации в центральной нервной системе и перекодирования ее в нервных центрах. Использование теории вероятностей и теории информации открывает путь точному анализу закономерностей переработки информации в нервной системе. Большой интерес с т. зр. К. представляет изучение естеств. способов кодирования наследств. информации, обеспечивающих сохранение огромных количеств информации в ничтожных объемах наследств. вещества, содержащего уже в зародышевой клетке осн. признаки взрослого организма. Результатом взаимодействия К; с др. областями знания является углубление связи К. с практикой. Так, осуществляемый средствами К. анализ работы самоорганизующихся систем управления, функционирующих в организме человека и животных, все более приобретает непосредственно практич. значение. Напр., К. уже оказывает существ. помощь в борьбе за здоровье людей. Причины многих заболеваний (грудная жаба, гипертония и др.) тесно связаны c нарушением процессов управления деятельностью внутр. органов, осуществляемого головным мозгом; большую роль в развитии заболеваний играет возникновение патологич. форм управления, вызывающих стойкое изменение в функционировании отд. органов и систем организма; кибернетич. подход к изучению такого рода болезней указывает новые пути мед. воздействия на больной организм. Использование К. в невропатологии и психиатрии привело в наст. время к созданию представлений о нейрофизиологич. механизмах возникновения треморов, нарушений координации движений, психозов навязчивости и др.; на этой основе разрабатываются новые методы нейрохирургич. лечебного вмешательства. Использование К. позволила создать ряд аппаратов, возмещающих утраченные или временно выключенные функции организма (таковы, напр., автомат "Сердце-легкие", позволяющий полностью отключить сердце и малый круг кровообращения, заменяя то и другое на время хирургич. вмешательства; активные моторизованные протезы конечностей, управляемые биоэлектрич. потенциалами мышц культи; автоматы для искусств. дыхания и др.). Проводятся эксперименты по созданию приборов для чтения для слепых. Во все возрастающей степени К. используется для целей мед. диагностики. С ее помощью реализован ряд синтез-анализаторных аппаратов для автоматич. получения картины движения электрич. диполя сердца (по электрокардиограммам), для анализа биоэлектрич. потенциалов мозга, для синтезирования целостной картины электрич. поля мозговой коры и для вариационно-статистич., аутокорреляционной и т.д. обработки кривых патофизиологич. процессов. В отд. клинич. отраслях ведутся работы по программированию сводных диагностич. таблиц, основываемых на массовом материале и обещающих в будущем возможность использовать консультацию электронных машин в постановке диагнозов в сложных случаях и на ранней стадии тяжелых заболеваний. К. в социалистическом о б щ е с т в е. В обществе имеются области управления, к к-рым применима К.; таковы машины и системы машин, технологич. процессы, транспортные операции, деятельность коллективов людей, решающих определ. задачи в области экономики, воен. дела и т.д. По мере прогресса обществ. произ-ва, науки и техники, с одной стороны, растут трудности в организации управления, а с другой – повышаются требования к его качеству, т.к. управление должно становиться все более и более точным и оперативным. Особенно большие требования предъявляются к процессам управления в социалистич. об-ве, т.к. в нем осуществляется п л а н о в о е развитие экономики и культуры. Ленин неоднократно указывал на значение науч. организации управленч. труда. В статье "Лучше меньше, да лучше", советуя привлекать к работе в советском госаппарате безупречных коммунистов и рабочих, он обратил внимание на то, что они "...должны выдержать испытание на знание основ теории по вопросу о нашем госаппарате, на знание основ науки управления..." (Соч., т. 33, с. 449). Ленин требовал науч. разработки вопросов организации труда и специально труда управленческого. Следуя указаниям Ленина, КПСС всегда уделяла большое внимание совершенствованию процессов управления в сов. об-ве. Для разработки методов управления, для повышения эффективности управленч. труда в социалистич. об-ве применение К. имеет исключительно важное, общегосударств. значение. К. вырабатывает такие методы, создает, такие науч. и технич. средства, к-рые позволяют осуществлять в оптимальном режиме процессы управления в нар. х-ве и адм. деятельности, в н.-и. работе, т.е. достигать поставл. целей с наименьшими затратами времени, труда, материальных средств и энергии. Планомерное, осуществляемое под руководством Коммунистич. партии и социалистич. гос-ва применение средств К. имеет важнейшее значение для оптимального управления целенаправленным, высокоэффективным и хорошо организованным трудом строителей коммунизма. Поэтому КПСС требует полностью использовать и поставить на службу строительству коммунизма науч. и технич. возможности К. В ходе развернутого строительства коммунизма в СССР, как говорится в Программе КПСС, получат широкое применение "...кибернетика, электронные счетно-решающие и управляющие устройства в производственных процессах промышленности, строительной индустрии и транспорта, в научных исследованиях, в плановых и проектно-конструкторских расчетах, в сфере учета и управления" (1961, с. 71). К. составляет теоретич. фундамент комплексной автоматизации производств. процессов. Совр. уровень развития производит. сил социалистич. об-ва требует все более широкого применения в управлении учреждениями, предприятиями, цехами, производств. участками и т.д. автоматизированных систем, основанных на использовании методов К. и электронной вычислит. техники. Успешное осуществление автоматизации создает возможности для резкого повышения производительности труда, увеличения выпуска продукции, достижения ее оптимальной себестоимости и улучшения качества. Важнейшее значение имеет применение К. в управлении экономикой и в экономич. исследованиях, а также в сфере учета, статистики, адм. деятельности, коммуникаций и т.д. Говоря о приложении К. в экономике, следует различать применение электронных машин для автоматизации процессов сбора и переработки информации и применение математич. средств К. (аппарата теории игр, линейного и динамич. программирования, теории массового обслуживания, методов исслед

Ещё одно определение предложено Льюисом Кауфманом (англ. ) : «Кибернетика - это исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь , что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи » и заключаются методы кибернетики.

Современная кибернетика зарождалась, включая в себя исследования в различных областях систем управления , теории электрических цепей , машиностроения , математического моделирования , математической логики , эволюционной биологии , неврологии , антропологии . Эти исследования появились в 1940 году , в основном, в трудах учёных на т. н. конференциях Мэйси (англ. ) .

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием: теория управления , теория игр , теория систем (математический аналог кибернетики), психология (особенно нейропсихология , бихевиоризм , познавательная психология) и философия .

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы , не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход , кибернетическая система . Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ , человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер , 1948) связано с созданием в 40-х годах XX века этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники.

Теория сложных систем

Теория сложных систем анализирует природу сложных систем и причины, лежащие в основе их необычных свойств.

  • Сложные системы
  • Теория сложных систем

В вычислительной технике

В вычислительной технике методы кибернетики применяются для управления устройствами и анализа информации.

В инженерии

Кибернетика в инженерии используется, чтобы проанализировать отказы систем, в которых маленькие ошибки и недостатки могут привести к сбою всей системы.

В экономике и управлении

  • Кибернетическое управление

В математике

В социологии

История

В Древней Греции термин «кибернетика», изначально обозначавший искусство кормчего, стал использоваться в переносном смысле для обозначения искусства государственного деятеля, управляющего городом. В этом смысле он, в частности, используется Платоном в «Законах ».

Первая искусственная автоматическая регулирующая система, водяные часы , была изобретена древнегреческим механиком Ктезибием. В его водяных часах вода вытекала из источника, такого как стабилизирующий бак, в бассейн, затем из бассейна - на механизмы часов. Устройство Ктезибия использовало конусовидный поток для контроля уровня воды в своём резервуаре и регулировки скорости потока воды соответственно, чтобы поддержать постоянный уровень воды в резервуаре, так, чтобы он не был ни переполнен, ни осушен. Это было первым искусственным действительно автоматическим саморегулирующимся устройством, которое не требовало никакого внешнего вмешательства между обратной связью и управляющими механизмами. Хотя они, естественно, не ссылались на это понятие как на науку кибернетику (они считали это областью инженерного дела), Ктезибий и другие мастера древности, такие как Герон Александрийский или китайский учёный Су Сун, считаются одними из первых, изучавших кибернетические принципы. Исследование механизмов в машинах с корректирующей обратной связью датируется ещё концом XVIII века , когда паровой двигатель Джеймса Уатта был оборудован управляющим устройством, центробежным регулятором обратной связи для того, чтобы управлять скоростью двигателя. А. Уоллес описал обратную связь как «необходимую для принципа эволюции» в его известной работе 1858 года . В 1868 году великий физик Дж. Максвелл опубликовал теоретическую статью по управляющим устройствам, одним из первых рассмотрел и усовершенствовал принципы саморегулирующихся устройств. Я. Икскюль применил механизм обратной связи в своей модели функционального цикла (нем. Funktionskreis ) для объяснения поведения животных.

XX век

Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем .

Кибернетика как научная дисциплина была основана на работах Винера, Мак-Каллока и других, таких как У. Р. Эшби и У. Г. Уолтер .

Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Наряду с Великобританией и США, важным географическим местоположением ранней кибернетики была Франция.

Во время этого пребывания во Франции Винер получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании броуновского движения (т. н. винеровский процесс) и в теории телекоммуникаций. Следующим летом, уже в Соединённых Штатах, он использовал термин «кибернетика» как заглавие научной теории. Это название было призвано описать изучение «целенаправленных механизмов» и было популяризировано в книге «Кибернетика, или управление и связь в животном и машине» (Hermann & Cie, Париж, 1948). В Великобритании вокруг этого в 1949 году образовался Ratio Club (англ. ) .

Кибернетика в СССР

Голландские учёные-социологи Гейер и Ван дер Зоувен в 1978 году выделили ряд особенностей появляющейся новой кибернетики. «Одной из особенностей новой кибернетики является то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой. Это обеспечивает эпистемологическое основание науки, если смотреть на это с точки зрения наблюдателя. Другая особенность новой кибернетики - её вклад в преодоление проблемы редукции (противоречий между макро- и микроанализом). Таким образом, это связывает индивидуума с обществом» . Гейер и Ван дер Зоувен также отметили, что «переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе к управляющей и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом» .

Последние усилия в изучении кибернетики, систем управления и поведения в условиях изменений, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции и исследование метаматериалов (материалов со свойствами атомов, их составляющих, за пределами ньютоновых свойств), привели к возрождению интереса к этой всё более актуальной области .

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png