СВОЙСТВА ЛОГИЧЕСКИХ ОПЕРАЦИЙ

1. Обозначения

1.1. Обозначения для логических связок (операций):

a) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);

b) конъюнкция (логическое умножение, логическое И) обозначается /\
(например, А /\ В) либо & (например, А & В);

c) дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \/
(например, А \/ В);

d) следование (импликация) обозначается → (например, А → В);

e) тождество обозначается ≡ (например, A ≡ B). Выражение A ≡ B истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);

f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 – для обозначения лжи (ложного высказывания).

1.2. Два логических выражения, содержащих переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения А → В и (¬А) \/ В равносильны, а А /\ В и А \/ В – нет (значения выражений разные, например, при А = 1, В = 0).

1.3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, ¬А \/ В \/ С \/ D означает то же, что и

((¬А) \/ В)\/ (С \/ D).

Возможна запись А \/ В \/ С вместо (А \/ В) \/ С. То же относится и к конъюнкции: возможна запись А /\ В /\ С вместо (А /\ В) /\ С.

2. Свойства

Приведенный ниже список НЕ претендует на полноту, но, надеемся, достаточно представителен.

2.1. Общие свойства

  1. Для набора из n логических переменных существует ровно 2 n различных значений. Таблица истинности для логического выражения от n переменных содержит n+1 столбец и 2 n строк.

2.2.Дизъюнкция

  1. Если хоть одно из подвыражений, к которым применяется дизъюнкция, истинно на некотором наборе значений переменных, то и вся дизъюнкция истинна для этого набора значений.
  2. Если все выражения из некоторого списка истинны на некотором наборе значений переменных, то дизъюнкция этих выражений тоже истинна.
  3. Если все выражения из некоторого списка ложны на некотором наборе значений переменных, то дизъюнкция этих выражений тоже ложна.
  4. Значение дизъюнкции не зависит от порядка записи подвыражений, к которым она применяется.

2.3. Конъюнкция

  1. Если хоть одно из подвыражений, к которым применяется конъюнкция, ложно на некотором наборе значений переменных, то и вся конъюнкция ложна для этого набора значений.
  2. Если все выражения из некоторого списка истинны на некотором наборе значений переменных, то конъюнкция этих выражений тоже истинна.
  3. Если все выражения из некоторого списка ложны на некотором наборе значений переменных, то конъюнкция этих выражений тоже ложна.
  4. Значение конюнкции не зависит от порядка записи подвыражений, к которым она применяется.

2.4. Простые дизъюнкции и конъюнкции

Назовем (для удобства) конъюнкцию простой , если подвыражения, к которым применяется конъюнкция, – различные переменные или их отрицания. Аналогично, дизъюнкция называется простой , если подвыражения, к которым применяется дизъюнкция, – различные переменные или их отрицания.

  1. Простая конъюнкция принимает значение 1 (истина) ровно на одном наборе значений переменных.
  2. Простая дизъюнкция принимает значение 0 (ложь) ровно на одном наборе значений переменных.

2.5. Импликация

  1. Импликация A B равносильна дизъюнкции А) \/ В. Эту дизъюнкцию можно записать и так: ¬А \/ В.
  2. Импликация A B принимает значение 0 (ложь) только если A=1 и B=0. Если A=0, то импликация A B истинна при любом значении B.

Операция дизъюнкция (лат. disjunctio - разделение) (логическое сложение ) - это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны и истинным, когда хотя бы одно из двух образующих его высказываний истинно.

Условное обозначение на структурных схемах логического элемента ИЛИ с двумя входами представлено на Рис. 2.8. Знак 1 на схеме - от устаревшего обозначения дизъюнкции как >=1 (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом F этой схемы и входами A и B описывается соотношением: F = A v B (читается как A или B).

Рис. 2.8. Логический элемент электронной схемы ИЛИ

Рассмотрим таблицу истинности для операции дизъюнкции ИЛИ с двумя входами A и B.

Таблица 2.3

Операция дизъюнкции (логическое сложение)

А (вход) B(вход) A v B (выход)

Для обозначения дизъюнкции используют знаки Ú, + , или .

Операции дизъюнкции в электрических контактных схемах соответствует параллельное соединение контактов. Например, электрическая контактная схема на рисунке 2.9 соответствует дизъюнкции .

Рис. 2.9 Параллельное соединение контактов

Набор выше рассмотренных логических функций НЕ, И, ИЛИ (отрицание, конъюнкция, дизъюнкция) наиболее известный и называется функционально полным набором или базисом . С помощью этих логических функций можно выразить любые другие логические функции.

Логическое сложение (дизъюнкция)

Логическое умножение (конъюнкция)

Логическое умножение есть соединение двух простых высказываний союзом "И". Например, возьмем два высказывания: «Дважды два равно четырем» (a), «Трижды три равно девяти» (a). Сложное высказывание «Дважды два равно четырем и Трижды три равно девяти» истинно, т.к. истинны оба высказывания a и b. Но если взять другие высказывания: «Дважды два равно четырем» (c), и «Стол имеет 2 ножки» (d), то сложное высказывание «Дважды два равно четырем и Стол имеет 2 ножки» будет ложным, т.к. ложно высказывание (d).

Конъюнкция: сложное высказывание, в простейшем случае являющееся соединением двух простых высказываний a и b, истинно тогда и только тогда, когда истинны оба высказывания a и b.

Обозначения операции «конъюнкция»: a & b, a and b, ab, a Λ b.

Знак & - амперсанд - читается как английское "and".

Таблица истинности функции «логическое умножение»:

Логическое умножение
Аргументы Функция
a b F = ab

Значение функции a = «2*2=4» =1, значение функции b = «3*3=8» = 0.

Значение функции ab = «(2*2=4) & (3*3=8)» = 0

Логическое сложение есть соединение двух простых высказываний союзом "ИЛИ". Например, возьмем два высказывания: «Дважды два равно четырем» (a), «Трижды три равно девяти» (b). Сложное высказывание «Дважды два равно четырем ИЛИ трижды три равно девяти» истинно, т.к. оно соответствует действительности. Формально, это сложное высказывание является истинным, т.к. истинны оба этих высказывания. С точки зрения здравого смысла, даже если взять два других высказывания: «Дважды два равно четырем» (c) и «Стол имеет 2 ножки» (d), то сложное высказывание «Дважды два равно четырем ИЛИ стол имеет 2 ножки» соответствует действительности и является истинным. Формально оно является истинным, т.к. в этом сложном высказывании есть одно истинное высказывание (c). Таким образом, исходя из обычного смысла союза "ИЛИ", приходим к определению соответствующей логической операции - дизъюнкции.

Дизъюнкция: сложное высказывание, в простейшем случае являющееся соединением двух простых высказываний a и b, истинно тогда и только тогда, когда истинным является хотя бы одно высказывание - a или b.

Обозначения операции «дизъюнкция»: a ! b, a or b, a + b, a V b.

Таблица истинности функции «логическое сложение»:

Логическое умножение
Аргументы Функция
a b F = a V b


1. Значение функции a = «2*2=4» =1, значение функции b = «3*3=8» = 0.

Значение функции a V b = «(2*2=4) V (3*3=8)» = 1

2. Значение функции a = «2*2=4» =1, значение функции b = «3*3=9» = 1.

Значение функции a V b = «(2*2=4) V (3*3=9)» = 1

3. Значение функции a = «2*2=5» =0, значение функции b = «3*3=8» = 0.

Значение функции a V b = «(2*2=5) V (3*3=8)» = 0

Равносильные логические выражения: логические функции, представленные разными формулами, но для одинаковых комбинаций логических переменных (аргументов) имеющие одно и то же значение.

Пример. С помощью таблиц истинности определим равносильность двух выражений: &и .

Сравнивая эти две таблицы истинности, можно убедиться в равносильности двух сложных выражений.

Для обозначения равносильных логических выражений применяется знак «=».

Для рассмотренного случая можно записать: &= .

Конъюнкция или логическое умножение (в теории множеств – это пересечение)

Конъюнкция является сложным логическим выражением, которое истинно в том и только том случае, когда оба простых выражения являются истинными. Такая ситуация возможно лишь в единственном случае, во всех остальных случаях конъюнкция ложна.

Обозначение: &, $\wedge$, $\cdot$.

Таблица истинности для конъюнкции

Рисунок 1.

Свойства конъюнкции:

  1. Если хотя бы одно из подвыражений конъюнкции ложно на некотором наборе значений переменных, то и вся конъюнкция будет ложной для этого набора значений.
  2. Если все выражения конъюнкции истинны на некотором наборе значений переменных, то и вся конъюнкция тоже будет истинна.
  3. Значение всей конъюнкции сложного выражения не зависит от порядка записи подвыражений, к которым она применяется (как в математике умножение).

Дизъюнкция или логическое сложение (в теории множеств это объединение)

Дизъюнкция является сложным логическим выражением, которое истинно практически всегда, за исключением, когда все выражения ложны.

Обозначение: +, $\vee$.

Таблица истинности для дизъюнкции

Рисунок 2.

Свойства дизъюнкции:

  1. Если хотя бы одно из подвыражений дизъюнкции истинно на некотором наборе значений переменных, то и вся дизъюнкция принимает истинное значение для данного набора подвыражений.
  2. Если все выражения из некоторого списка дизъюнкции ложны на некотором наборе значений переменных, то и вся дизъюнкция этих выражений тоже ложна.
  3. Значение всей дизъюнкции не зависит от порядка записи подвыражений (как в математике – сложение).

Отрицание, логическое отрицание или инверсия (в теории множеств это отрицание)

Отрицание - означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО и в итоге получаем, что если исходное выражение истинно, то отрицание исходного – будет ложно и наоборот, если исходное выражение ложно, то его отрицание будет истинно.

Обозначения: не $A$, $\bar{A}$, $¬A$.

Таблица истинности для инверсии

Рисунок 3.

Свойства отрицания:

«Двойное отрицание» $¬¬A$ является следствием суждения $A$, то есть имеет место тавтология в формальной логике и равно самому значению в булевой логике.

Импликация или логическое следование

Импликация - это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть, данная логическая операция связывает два простых логических выражения, из которых первое является условием ($A$), а второе ($A$) является следствием условия ($A$).

Обозначения: $\to$, $\Rightarrow$.

Таблица истинности для импликации

Рисунок 4.

Свойства импликации:

  1. $A \to B = ¬A \vee B$.
  2. Импликация $A \to B$ ложна, если $A=1$ и $B=0$.
  3. Если $A=0$, то импликация $A \to B$ истинна при любом значении $B$, (из лжи может следовать истинна).

Эквивалентность или логическая равнозначность

Эквивалентность - это сложное логическое выражение, которое истинно на равных значениях переменных $A$ и $B$.

Обозначения: $\leftrightarrow$, $\Leftrightarrow$, $\equiv$.

Таблица истинности для эквивалентности

Рисунок 5.

Свойства эквивалентности:

  1. Эквивалентность истинна на равных наборах значений переменных $A$ и $B$.
  2. КНФ $A \equiv B = (\bar{A} \vee B) \cdot (A \cdot \bar{B})$
  3. ДНФ $A \equiv B = \bar{A} \cdot \bar{B} \vee A \cdot B$

Строгая дизъюнкция или сложение по модулю 2 (в теории множеств это объединение двух множеств без их пересечения)

Строгая дизъюнкция истинна, если значения аргументов не равны.

Для электроники это означает, что реализация схем возможна с использованием одного типового элемента (правда это дорогостоящий элемент).

Порядок выполнения логических операций в сложном логическом выражении

  1. Инверсия(отрицание);
  2. Конъюнкция (логическое умножение);
  3. Дизъюнкция и строгая дизъюнкция (логическое сложение);
  4. Импликация (следствие);
  5. Эквивалентность (тождество).

Для того чтобы изменить указанный порядок выполнения логических операций, необходимо использовать скобки.

Общие свойства

Для набора из $n$ логических переменных существует ровно $2^n$ различных значений. Таблица истинности для логического выражения от $n$ переменных содержит $n+1$ столбец и $2^n$ строк.

Алгебра логики и логические основы компьютера

Алгебра логики (булева алгебра) - это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля . Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

Логические операции. Дизъюнкция, конъюнкция и отрицание

Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда, когда сделаю уроки», «5 не равно 6».

Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.

Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операторами.


Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают &, дизъюнкцию - ||, а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции@/a> истина с ложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание - это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

Для логических величин обычно используются три операции:

Конъюнкция - логическое умножение (И) - and, &, ∧.

Дизъюнкция - логическое сложение (ИЛИ) - or, |, v.

Логическое отрицание (НЕ) - not,.

Логические операции удобно описывать так называемыми таблицами истинности, в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

Логические основы компьютера

В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.

Переключательные схемы

В ЭВМ применяются электрические схемы, состоящие из множества переключателей. Переключатель может находиться только в двух состояниях: замкнутом и разомкнутом. В первом случае - ток проходит, во втором - нет. Описывать работу таких схем очень удобно с помощью алгебры логики. В зависимости от положения переключателей можно получить или не получить сигналы на выходах.

Вентили, триггеры и сумматоры

Вентиль представляет собой логический элемент, который принимает одни двоичные значения и выдает другие в зависимости от своей реализации. Так, например, есть вентили, реализующие логическое умножение (конъюнкцию), сложение (дизъюнкцию) и отрицание.

Триггеры и сумматоры - это относительно сложные устройства, состоящие из более простых элементов - вентилей.

Триггер способен хранить один двоичный разряд, за счет того, что может находиться в двух устойчивых состояниях. В основном триггеры используется в регистрах процессора.

Сумматоры широко используются в арифметико-логических устройствах (АЛУ) процессора и выполняют суммирование двоичных разрядов.

Информация и информационные процессы. Виды информации, её двоичное кодирование. Количество информации, подходы к определению понятия «количество информации», единицы измерения информации. Двоичное кодирование числовой, текстовой, графической, звуковой информации

Информация (от лат. informatio — «разъяснение, изложение, осведомлённость») — сведения о чём-либо, независимо от формы их представления.

В настоящее время не существует единого определения информации как научного термина. С точки зрения различных областей знания данное понятие описывается своим специфическим набором признаков. Понятие «информация» является базовым в курсе информатики, где невозможно дать его определение через другие, более «простые» понятия.

Свойства информации:

Объективность (информация объективна, если она не зависит от чьего-либо мнения, суждения);

Достоверность (информация достоверна, если она отражает истинное положение дел);

Полнота (информация полна, если ее достаточно для понимания и принятия решения);

Актуальность (информация актуальна, своевременна, если она важна, существенна для настоящего времени);

Полезность (оценивается по тем задачам, которые мы можем решить с ее помощью);

Понятность (информация понятна, если она выражена на языке, доступном для получателя);

Доступность (информация доступна, если мы можем её получить).

Информационный процесс - совокупность последовательных действий (операций), производимых над информацией (в виде данных, сведений, фактов, идей, гипотез , теорий и пр.), для получения какого-либо результата (достижения цели).

Информация проявляется именно в информационных процессах. Информационные процессы всегда протекают в каких-либо системах (социальных, социотехнических, биологических и пр.).

Наиболее обобщенными информационными процессами являются сбор, преобразование, использование информации.

К основным информационным процессам, изучаемым в курсе информатики, относятся: поиск, отбор, хранение, передача, кодирование, обработка, защита информации.

Информационные процессы, осуществляемые по определенным информационным технологиям, составляет основу информационной деятельности человека.

Компьютер является универсальным устройством для автоматизированного выполнения информационных процессов.

Люди имеют дело со многими видами информации. Общение людей друг с другом дома и в школе, на работе и на улице - это передача информации. Учительский рассказ или рассказ товарища, телевизионная передача, телеграмма, письмо, устное сообщение и т.д. - все это примеры передачи информации.

И мы уже говорили о том , что одну и ту же информацию можно передать и получить различными путями. Так, чтобы найти дорогу в музей в незнакомом городе, можно спросить прохожего, получить справку в справочном бюро, попытаться разобраться самому с помощью плана города или обратиться к путеводителю. Когда мы слушаем объяснение учителя, читаем книги или газеты, смотрим новости ТВ, посещаем музеи и выставки - в это время мы получаем информацию.

Человек хранит полученную информацию в голове. Мозг человека - огромное хранилище информации. Блокнот или записная книжка, ваш дневник, школьные тетрадки, библиотека, музей, кассета с записями любимых мелодий, видеокассеты - все это примеры хранения информации.

Информацию можно обрабатывать : перевод текста с английского языка на русский и наоборот, вычисление суммы по заданным слагаемым, решение задачи, раскрашивание картинок или контурных карт - все это примеры обработки информации. Все вы любили в свое время раскрашивать книжки-раскраски. Оказывается, в это время вы занимались важным процессом - обработкой информации, черно-белый рисунок превращали в цветной.

Информацию можно даже терять. Допустим, Иванов Дима забыл дневник дома и поэтому записал домашнее задание на листочке. Но, играя на перемене, он сделал из него самолетик и запустил его. Придя домой, Дима не смог сделать домашнюю работу, он потерял информацию. Теперь ему нужно или попытаться вспомнить, что же ему задали, или позвонить однокласснику, чтобы получить нужную информацию, или идти в школу с невыполненным домашним заданием.

Двоичное кодирование - один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.

Двоичный алфавит состоит из двух цифр 0 и 1.

Цифровые ЭВМ (персональные компьютеры относятся к классу цифровых) используют двоичное кодирование любой информации. В основном это объясняется тем, что построить техническое устройство, безошибочно различающее 2 разных состояния сигнала, технически оказалось проще, чем то, которое бы безошибочно различало 5 или 10 различных состояний.

К недостаткам двоичного кодирования относят очень длинные записи двоичных кодов, что затрудняет работу с ними.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png