Преобразование энергии солнечного света и организмы использующие её

Сегодня мы поговорим об организмах, которые используют в своей жизнедеятельности солнечную энергию. Для этого нужно затронуть такую науку, как биоэнергетика. Она изучает способы преобразования энергии живыми организмами и использование её в процессе жизнедеятельности. В основе биоэнергетики лежит термодинамика. Эта наука описывает механизмы преобразования различных видов энергии друг в друга. В том числе, использование и преобразование различными организмами солнечной энергии. С помощью термодинамики можно полностью описать энергетический механизм процессов, происходящих вокруг нас. Но с помощью термодинамики нельзя понять природу того или иного процесса. В этой статье мы попробуем объяснить механизм использования солнечной энергии живыми организмами.

Для описания преобразования энергии в живых организмах или прочих объектах нашей планеты следует рассмотреть их с точки зрения термодинамики. То есть, системы, обменивающейся энергией с окружающей средой и объектами. Их можно подразделить на следующие системы:

  • Закрытые;
  • Изолированные;
  • Открытые.
Живые организмы, о которых идёт речь в этой статье, относятся к открытым системам. Они ведут непрерывный обмен энергией с ОС и окружающими объектами. Вместе с водой, воздухом, едой в организм поступают всевозможные химические вещества, которые отличаются от него по химическому составу. Попадая в организм, происходит их глубокая переработка. Они проходят ряд изменений и становятся подобны химическому составу организма. После этого они временно входят в состав организма.

Через некоторое время эти вещества разрушаются и обеспечивают организм энергией. Их продукты распада удаляются из организма. Их место в организме заполняют другие молекулы. При этом целостность структуры организма не нарушается. Такое усвоение и переработка энергии в организме обеспечивает обновление организма. Энергетический обмен необходим для существования всех живых организмов. При остановке процессов преобразования энергии в организме он умирает.

Солнечный свет является источником биологической энергии на Земле. Ядерная энергия Солнца обеспечивает выработку лучистой энергии. Атомы водорода в нашей звезде в результате реакции переходят в атомы He. Энергия, освобождающаяся во время реакции, выделяется в виде гамма-излучения. Сама реакция выглядит следующим образом:

4Н ⇒ Не4 + 2е + hv, где

v ─ длина волны гамма-лучей;

h ─ постоянная Планка.

В дальнейшем, после взаимодействия гамма-излучения и электронов, энергия выделяется в виде фотонов. Эту световую энергию излучает небесное светило.

Солнечная энергия при достижении поверхности нашей планеты улавливается и преобразуется растениями. В них энергия солнца превращается в химическую, которая запасается в виде химических связей. Это связи, которые в молекулах соединяют атомы. Примером может служить синтез глюкозы в растениях. Первая стадия этого преобразования энергии ─ фотосинтез. Растения обеспечивают его с помощью хлорофилла. Этот пигмент обеспечивает превращение лучистой энергии в химическую. Происходит синтез углеводов из H 2 O и CO 2 . Это обеспечивает рост растений и передачу энергии на следующую ступень.



Следующий этап передачи энергии происходит от растений животным или бактериям. На этом этапе энергия углеводов в растениях преобразуется в биологическую. Это происходит в процессе окисления молекул растений. Величина полученной энергии соответствует тому количеству, которое было затрачено на синтез. Частично эта энергия преобразуется в тепло. В результате энергия запасается в макроэргических связях аденозинтрифосфата. Так солнечная энергия, проходя ряд превращений, оказывается в живых организмах уже в другой форме.

Здесь стоит дать ответ на часто задаваемый вопрос: «Какой органоид использует энергию солнечного света?». Это хлоропласты, участвующие в процесс фотосинтеза. Они используют её для синтеза из неорганических веществ органических.

В непрерывном потоке энергии заключается суть всего живого. Он постоянно движется между клетками и организмами. На клеточном уровне для преобразования энергии существуют эффективные механизмы. Можно выделить 2 основные структуры, где происходит превращение энергии:

  • Хлоропласты;
  • Митохондрии.

Человек, как и другие живые организмы на планете, пополняет энергетический запас из продуктов. Причём, часть потребляемых продуктов растительного происхождения (яблоки, картофель, огурцы, помидоры), а часть животного (мясо, рыба и другие морепродукты). Животные, которые мы употребляем в пищу, энергию также получают из растений. Поэтому вся получаемая нашим организмом энергия преобразуется из растений. А у них она появляется в результате преобразования солнечной энергии.

По типу получения энергии все организмы можно разделить на две группы:

  • Фототрофы. Черпают энергию из солнечного света;
  • Хемотрофы. Получают энергию во время окислительно-восстановительной реакции.


То есть, солнечная энергия используется растениями, а животные получают энергию, которая находится в органических молекулах во время поедания растений.

Как преобразуется энергия в живых организмах?

Существует 3 основных разновидности энергии, преобразуемой организмами:

  • Преобразование лучистой энергии. Этот вид энергии несёт солнечный свет. В растениях лучистая энергия улавливается пигментом хлорофиллом. В результате фотосинтеза она превращается в химическую энергию. Та, в свою очередь, используется в процессе синтеза кислорода и других реакциях. Солнечный свет несёт в себе кинетическую энергию, а в растениях она превращается в потенциальную. Полученный энергетический запас сохраняется в питательных веществах. К примеру, в углеводах;
  • Преобразование химической энергии. Из углеводов и прочих молекул она превращается в энергию макроэргических фосфатных связей. Эти преобразования проходят в митохондриях.
  • Преобразование энергии макроэргических фосфатных связей. Она расходуется клетками живого организма для совершения разных видов работ (механическая, электрическая, осмотическая и т. д.).

Во время этих трансформаций часть энергетического запаса теряется и рассеивается в виде тепла.

Использование организмами накопленной энергии

В процессе метаболизма организм получает энергетический запас, расходуемый на совершение биологической работы. Это может быть световая, механическая, электрическая, химическая работа. И очень большая часть энергии организм расходует в виде тепла.

Ниже кратко описаны основные типы энергии в организме:

  • Механическая. Характеризует движение макротел, а также механическую работу по их перемещению. Её можно разделить на кинетическую и потенциальную. Первая определяется скоростью передвижения макротел, а вторая ─ их местоположением по отношению друг к другу;
  • Химическая. Определяется взаимодействием атомов в молекуле. Она является энергией электронов, которые двигаются по орбитам молекул и атомов;
  • Электрическая. Это взаимодействие заряженных частиц, которое вызывает их движение в электрическом поле;
  • Осмотическая. Расходуется при передвижении против градиента концентраций молекул вещества;
  • Регуляторная энергия.
  • Тепловая. Определяется хаотическим движением атомов и молекул. Основной характеристикой этого движения является температура. Этот вид энергии является самым обесцененных из всех, перечисленных выше.
Связь между температурой и кинетической энергией атома можно описать следующей формулой:

Е h = 3/2rT, где

r ─ постоянная Больцмана (1,380*10 -16 эрг/град).

Некоторые организмы обладают особым преимуществом, которое позволяет им выдерживать самые экстремальные условия, где другие просто не справятся. Среди таких способностей можно отметить устойчивость к огромному давлению, экстремальным температурам и другие. Эти десять существ из нашего списка дадут фору любому, кто осмелится претендовать на звание самого выносливого организма.

10. Гималайский прыгающий паук

Азиатский дикий гусь славится полетами на высоте более 6,5 километров, в то время как самое высокое поселение, населенное людьми, находится на высоте в 5100 метров, в перуанских Андах. Тем не менее, высокогорный рекорд принадлежит вовсе не гусям, а гималайскому прыгающему пауку (Euophrys omnisuperstes). Обитая на высоте свыше 6700 метров, этот паук питается преимущественно мелкими насекомыми, занесенными туда порывами ветра. Ключевой особенностью этого насекомого является способность выжить в условиях почти полного отсутствия кислорода.

9. Гигантский кенгуровый прыгун


Обычно, когда мы размышляем о животных, которые способны дольше всех прожить без воды, на ум сразу приходит верблюд. Но верблюды способны продержаться без воды в пустыне всего лишь 15 дней. Между тем, вы удивитесь, когда узнаете, что в мире существует животное, способное прожить всю жизнь, так и не выпив ни капли воды. Гигантский кенгуровый прыгун - близкий родственник бобров. Средняя продолжительность их жизни обычно составляет от 3 до 5 лет. Влагу они обычно получают из пищи, поедая различные семена. Кроме того, эти грызуны не потеют, тем самым избегая дополнительных потерь воды. Обычно эти зверьки обитают в Долине Смерти, и в данный момент находятся под угрозой исчезновения.

8. "Жароустойчивые" черви


Поскольку тепло в воде более эффективно передается организмам, то температура воды в 50 градусов по Цельсию будет куда опаснее, чем такая же температура воздуха. По этой причине в горячих подводных источниках процветают преимущественно бактерии, чего не скажешь о многоклеточных формах жизни. Тем не менее, существует особый вид червей, называемый paralvinella sulfincola, который с радостью обустраивается в местах, где вода достигает температур в 45-55 градусов. Учеными был проведен эксперимент, где подогревалась одна из стенок аквариума, в результате выяснилось, что черви предпочли оставаться именно в этом месте, игнорируя более прохладные места. Считается, что такая особенность выработалась у червей для того, чтобы те могли лакомиться бактериями, в изобилии водящимися в горячих источниках. Поскольку у них до этого не было естественных врагов, бактерии были сравнительно легкой добычей.

7. Гренландская полярная акула


Гренландская полярная акула - одна из самых крупных и наименее изученных акул планеты. Несмотря на то, что плавают они достаточно медленно (их может обогнать любой пловец-любитель), встречают их крайне редко. Это связано с тем, что этот вид акул, как правило, обитает на глубине в 1200 метров. Кроме того, эта акула одна из самых устойчивых к холоду. Обычно она предпочитает оставаться в воде, температура которой колеблется в промежутке между 1 и 12 градусами Цельсия. Поскольку эти акулы обитают в холодных водах, им приходится передвигаться крайне медленно, чтобы по минимуму тратить свою энергию. В пище они неразборчивы и едят все, что попадается на пути. Ходят слухи, что их срок жизни составляет порядка 200 лет, но никто до сих пор не смог подтвердить или опровергнуть его.

6. Дьявольский червь


На протяжении многих десятилетий ученые считали, что только одноклеточные организмы способны выживать на больших глубинах. По их мнению, высокое давление, недостаток кислорода и экстремальные температуры стояли на пути у многоклеточных существ. Но затем были обнаружены микроскопические черви на глубине в несколько километров. Названные halicephalobus mephisto, в честь демона из немецкого фольклора, она были обнаружены в пробах воды, на глубине в 2,2 километра от поверхности земле, залегавших в одной из пещер в Южной Африке. Им удалось пережить экстремальные условия окружающей среды, что дало возможность предположить, что на Марсе и на других планетах в нашей галактике возможна жизнь.

5. Лягушки


Некоторые виды лягушек широко известны благодаря своей способности буквально замораживаться на весь зимний период и оживать с приходом весны. В Северной Америке было найдено пять видов таких лягушек, самым распространенным среди которых является обычная древесная лягушка. Поскольку древесные лягушки не очень сильны в закапывании, то прячутся просто под опавшей листвой. В их жилах находится вещество наподобие антифриза, и хотя их сердца в конце концов останавливаются, это временное явление. Основой их техники выживания является огромная концентрация глюкозы, поступающая в кровь из печени лягушки. Что еще более удивительно, так это тот факт, что лягушки способны демонстрировать свое умение замораживаться не только в природной среде, но и в лабораторных условиях, позволяя ученым раскрыть свои секреты.

{banner_ads_inline}


4. Глубоководные микробы


Все мы знаем, что самая глубокая точка в мире - это Марианская впадина. Ее глубина достигает почти 11 километров, а давление там превышает атмосферное в 1100 раз. Несколько лет назад ученым удалось обнаружить там гигантских амеб, которых удалось заснять при помощи камеры с высоким разрешением и защищенной стеклянной сферой от того огромного давления, что царит на дне. Более того, недавняя экспедиция, отправленная самим Джеймсом Кэмероном, показала, что в глубинах Марианской впадины могут существовать и другие формы жизни. Были добыты образцы донных отложений, которые доказали, что впадина буквально кишит микробами. Этот факт поразил ученых, ведь экстремальные условия царящие там, а также огромное давление - далеко не райский уголок.

3. Bdelloidea


Коловратки вида Bdelloidea - невероятно крохотные беспозвоночные женского пола, обычно они встречаются в пресной воде. С момента их открытия, не было найдено ни одного самца этого вида, а сами коловратки размножаются бесполым путем, что, в свою очередь, разрушает их собственный ДНК. Восстанавливают они свой родной ДНК поедая другие виды микроорганизмов. Благодаря этой способности, коловратки могут выдерживать экстремальное обезвоживание, более того, они способны выдержать такие уровни радиации, которые убили бы большинство живых организмов нашей планеты. Ученые считают, что их способность восстанавливать свое ДНК появилась в результате необходимости выживания в крайне засушливой среде.

2. Таракан


Существует миф, что тараканы будут единственными живыми организмами, которые переживут ядерную войну. В самом деле, эти насекомые способны прожить без воды и пищи несколько недель, и более того, они могут неделями жить без головы. Тараканы существуют вот уже 300 миллионов лет, пережив даже динозавров. Каналом Discovery был проведен ряд экспериментов, которые должны были показать, выживут или нет тараканы при мощном ядерном излучении. В результате оказалось, что почти половина всех насекомых смогла пережить излучение в 1000 рад (такое излучение способно убить взрослого здорового человека всего за 10 минут воздействия), более того, 10% тараканов выжило при воздействии излучения в 10000 рад, что равно излучению при ядерном взрыве в Хиросиме. К сожалению, ни одно из этих маленьких насекомых не выжило после дозы излучения в 100000 рад.

1. Тихоходки


Крошечные водные организмы, называемые тихоходками, оказались самыми выносливыми организмами нашей планеты. Эти, на первый взгляд, милые животные способны пережить практически любые экстремальные условия, будь то жара или холод, огромное давление или высокая радиация. Они способны выжить некоторое время даже в космосе. В экстремальных условиях и в состоянии крайнего обезвоживания эти существа способны оставаться живыми на протяжении нескольких десятилетий. Они оживают, стоит их только поместить в водоем.

Ниже представлен список 10 удивительно выносливых существ, которые способны выжить в таких условиях в каких ни одно существо не может выжить.

Пауки-скакунчики - семейство пауков, содержащее в себе более 500 родов и около 5 000 видов это примерно 13% от всех видов пауков. Пауки-скакунчики обладают очень хорошим зрением, они также способны прыгать на расстояние, намного превышающее размер их тела. Эти активные дневные охотники, широко распространены по всему миру, включая пустыни, тропические леса и горы. В 1975 году представитель этого семейства был обнаружен даже на пике самой высокой горы в мире - Эвересте.


Девятое место в списке занимает Гигантский кенгуровый прыгун - грызун, находящийся под угрозой исчезновения и встречающийся только в штате Калифорния, США. Продолжительность его жизни составляет 2–4 года. За всю свою короткую жизнь грызун способен обходится без единой капли питьевой воды. Влагу необходимую для существования они получают из пищи, а это в основном семена.

Помпейский червь (Alvinella pompejana)


Помпейский червь - вид глубоководных червей, который был обнаружен в начале 1980-х годов в северо-восточной части Тихого океана. Эти черви бледно-серого цвета способны вырастать до 13 см в длину. Помпейский червь долгое время оставался неизученным, так как при попытке поднять его на поверхность он неизбежно умирал. Объясняется это тем, что во время подъёма привычное давления для Помпейского червя уменьшалось. Однако недавно французскими учёными с помощь специальной техники, которая поддерживала необходимое давление среды, удалось живыми и здоровыми доставить несколько особей в лабораторию. Выяснилось, что эти черви способны выжить при довольно-таки высоких температурах. Оптимальная температура для них составляет 42 °C, но при нагреве до 50-55 °C червь погибал.


Гренландские акулы являются одними из самых больших и наименее изученных акул в мире. Обитают в водах Северной Атлантики при температуре от 1–12 °С и глубине до 2 200 метров на которой примерное давление составляет 220 атмосфер или около 9 700 килограмма на квадратный сантиметр. Гренландские полярные акулы очень медлительны, их средняя скорость составляет 1,6 км/ч, а максимальная - 2,7 км/ч, отсюда и второе название «спящие акулы». Питаются почти всем, что могут поймать. Самые крупные особи этих акул могут достигать до 7,3 м и весить до 1,5 т, однако средняя длина варьируется от 2,44 до 4,8 м, а средний вес не превышает 400 кг. Точная продолжительность их жизни неизвестна, хотя есть теория, что они способны доживать до 200 лет. Является одним из самых долгоживущих животных на планете .


На протяжении десятилетий учёные считали, что только одноклеточные организмы могут выжить на очень больших глубинах под землёй из-за большого давления, недостатка кислорода и экстремальных температур. Однако после того как в 2011 году Гаэтаном Боргони и Таллисом Онстоттом в руде на золотодобывающих шахтах «Беатрикс» и «Префонтейн» в ЮАР на глубинах 0,9 км, 1,3 км и 3,6 км под поверхностью Земли были обнаружены эти многоклеточные организмы, гипотеза была опровергнута. Обнаруженные черви длиной в 0,52–0,56 мм обитали в небольших скоплениях воды температура, которой составляла 48 °C. Halicephalobus mephisto, возможно, самые глубокоживущие многоклеточные организмы на планете.


Некоторые виды лягушек были найдены буквально замороженными, но с наступлением весны они «оттаивали» и продолжали свою жизнедеятельность. В Северной Америке насчитывается пять известных видов таких лягушек. Наиболее распространённой является древесная лягушка, которая чтобы перезимовать просто прячется под листья и замерзает. Самое интересное то, что на время такой спячки сердце лягушки останавливается.


Многие знают, что глубочайшей точкой Мирового океана, а также наименее исследованным местом на планете является «Марианский жёлоб» глубиной в 11 км, где давление примерно в 1072 раза больше нормального атмосферного давления. В 2011 году, учёные с помощью камеры высокого разрешения и современного батискафа обнаружили на глубине 10 641 метров гигантских амёб, которые в несколько раз крупнее (10 см) своих родственников.

Bdelloidea


Bdelloidea - животное из класса коловраток, живущее в пресной воде, влажной почве и мокром мхе по всему миру. Являются микроскопическими организмами, длина которых не превышает 150–700 мкм (0,15–0,7 мм). Для невооружённого глаза они невидимы, но если смотреть через лупу животное Bdelloidea можно увидеть в виде маленьких белых точек. Они способны выжить в жёстких, сухих условиях благодаря ангидробиозу, состояние, которое позволяет организму этого животного быстро обезводится и, таким образом, противостоять высыханию. Как выяснилось, в этом состоянии животное способно пробыть до 9 лет, ожидая благоприятных условий для возвращения. Интересно, что с момента открытия ещё не был найден ни один представитель мужского пола.

Таракановые


Популярный миф гласит, что в случае ядерной войны, единственными выжившими на Земле будут тараканы . Не удивительно ведь они считаются одними из самых выносливых насекомых, способные жить без пищи и воды в течение одного месяца. А смертельная доза излучения радиации для этих насекомых больше в 6-15 раз, чем, например, для людей. Однако они всё же не настолько стойки к радиации, как, например, плодовые мушки. Найденные окаменелости таракана, показывают, что они жили 295–354 млн. лет назад опередив тем самым динозавров, хотя внешним видом эти тараканы, безусловно, отличались от современных тараканов.


Тихоходки - микроскопические животные, впервые описанные немецким пастором Иоганном Августом Эфраимом Гёце в 1773 году. Распространены по всему миру, включая дно океана и полярные регионы на экваторе. Чаще всего населяют лишайниковые и моховые подушки. Размер тела этих полупрозрачных беспозвоночных составляет 0,1-1,5 мм. Тихоходки обладают неимоверной выносливостью. Учёными было установлено что тихоходки способны выжить в течение нескольких минут при температуре 151 °С, а также могут жить несколько дней при температуре минус 200 °С. Они также поддавались излучению в 570 000 рентген и примерно 50% тихоходок остались живыми (для человека смертельная доза в 500 рентген). Ещё их помещали в специальную камеру высокого давления, заполненную водой и, поддавали воздействию 6 000 атмосфер, что в 6 раз больше чем давление на дне «Марианского жёлоба» - животные остались живы. Известен случай, когда мох, взятый с пустыни спустя примерно 120 лет после его иссушения, разместили в воду, и одна с пребывавших в нём тихоходок подала признаки жизни.

Живые организмы не составляют исключения в том смысле, что обмен энергии у них подчиняется всем обычным физическим законам. Процессы роста и поддержания жизни требуют затрат энергии, которые должны быть каким-то образом возмещены. Живые организмы поглощают из окружающей среды энергию в такой форме, чтобы ее можно было использовать в конкретных условиях их существования при данных значениях температуры и давления. Затем они возвращают в среду эквивалентное количество энергии, но уже в другой, менее доступной для них форме. Полезная форма энергии, которая требуется живой клетке, называется свободной энергией; ее можно определить просто как энергию, способную совершать работу при постоянных температуре и давлении.

Рис. 1-3. Живые организмы совершают различные виды работы за счет поглощаемой ими свободной энергии окружающей среды. Они возвращают в среду эквивалентное количество энергии в виде тепла и других форм непригодной для них энергии хаотического движения. Степень такого «обесценивания» (рассеяния) энергии можно охарактеризовать энтропией.

Менее полезный вид энергии, возвращаемый клеткой в окружающую среду, выделяется главным образом в форме тепла, которое рассеивается в среде и превращается в энергию беспорядочного движения. Таким образом, мы можем сформулировать еще один принцип молекулярной логики живого:

Живые организмы создают и поддерживают сложные, упорядоченные и целенаправленные элементы своей структуры за счет свободной энергии окружающей среды; эту энергию они затем возвращают в среду в менее пригодной для них форме.

Хотя живые организмы способны преобразовывать энергию, они кардинальным образом отличаются от обычных машин, созданных человеком. Системы преобразования энергии в живых клетках целиком построены из сравнительно хрупких и неустойчивых органических молекул, не способных выдерживать высокие температуры, сильный электрический ток, действие сильных кислот и оснований. Все части живой клетки имеют примерно одну и ту же температуру, нет в клетках и сколько-нибудь значительных перепадов давления. Отсюда можно заключить, что клетки не могут использовать тепло как источник энергии, поскольку тепло может совершать работу лишь тогда, когда оно переходит от более нагретого тела к более холодному. Клетки совсем не похожи на тепловые и электрические двигатели - наиболее знакомые нам типы двигателей.

Живые клетки представляют собой химические машины, работающие при постоянной температуре.

Это еще один принцип молекулярной логики живого состояния. Клетки используют химическую энергию для выполнения химической работы в процессе их роста и биосинтеза клеточных компонентов, а также осмотической работы, необходимой для переноса питательных веществ в клетку, и механической работы сократительного и двигательного аппаратов.

Рис. 1-4. Солнечный свет служит исходным источником всех форм биологической энергии.

Для всех живых организмов вбиосфере источником энергии служит в конечном счете солнечное излучение, которое возникает в результате реакции ядерного синтеза - слияния ядер водорода с образованием ядер гелия, протекающего на Солнце при необычайно высокой температуре. Фотосинтезирующие клетки растений улавливают энергию солнечного излучения и расходуют ее на превращение углекислого газа и воды в разнообразные богатые энергией растительные продукты, например крахмал и целлюлозу. При этом они выделяют в атмосферу молекулярный кислород. Другие организмы, не способные к фотосинтезу, получают необходимую им энергию путем окисления богатых энергией растительных продуктов атмосферным кислородом. Образующийся в результате углекислый газ и другие продукты окисления возвращаются в окружающую среду и снова вовлекаются растениями в круговорот веществ. Это дает нам основание сформулировать еще два принципа молекулярной логики живого состояния.

Энергетические потребности всех живых организмов прямо или косвенно удовлетворяются за счет солнечной энергии.

Весь растительный и животный мир (вообще все живые организмы) зависят друг от друга, поскольку между ними через внешнюю среду постоянно происходит обмен энергией и материей.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png