Статически неопределимыми называются такие стержни и стержневые системы, в которых реактивные факторы и внутренние усилия не могут быть определены только из уравнений равновесия. Данные системы классифици­руются по степени статической неопределимости. Степень статической не­определимости представляет собой разность между числом неизвестных реакций и числом уравнений равновесия. Степень статической неопредели­мости системы определяет количество дополнительных уравнений (уравне­ния перемещений), которые необходимо составить при раскрытии статической неопределимости.

В статически определимых стержневых системах усилия возникают только от действия внешней нагрузки. В статически неопределимых стерж­невых системах усилия возникают не только от внешних нагрузок, но и в ре­зультате неточности изготовления отдельных элементов системы, изменения температуры элементов системы и т.д. При отклонении действительных про­дольных размеров стержней от номинальных (расчётных) при сборке стати­чески неопределимых систем возникают дополнительные, так называемые монтажные усилия и напряжения. При изменении температуры статически неопределимой стержневой системы в ее элементах возникают дополнитель­ные, так называемые температурные усилия и напряжения.

Расчет статически неопределимых стержней и стержневых систем вы­полняется по следующей методике.

1. Проводится анализ схемы закрепления и определяется степень статиче­ской неопределимости стержневой системы.

2. Рассматривается статическая сторона задачи, т.е. составляются уравне­ния равновесия.

3. Анализируется геометрическая сторона задачи. Система рассматрива­ется в деформированном состоянии, устанавливается взаимосвязь между де­формациями или перемещениями отдельных элементов системы. Полученные уравнения являются уравнениями совместности перемещений (деформаций). Количество уравнений совместности перемещений (деформа­ции) равно степени статической неопределимости системы.

4. Рассматривается физическая сторона задачи. На основе закона Р.Гука перемещения или деформации элементов системы выражаются через дейст­вующие в них внутренние усилия и с учётом этого записываются уравнения совместности перемещений в развёрнутом виде.

5. Решая совместно уравнения равновесия и совместности перемещений в развёрнутом виде определяются неизвестные реакции, т.е. раскрывается ста­тическая неопределимость стержневой системы.

6. Дальнейший расчёт на прочность и жёсткость аналогичен расчёту статически определимых систем.

Методика решения статически неопределимых стержней и стержневых систем показана на примерах решения различных задач.



Пример 1. Ступенчатый стержень, защемлённый с обеих сторон, нагружен силами F (рис.10,а). Требуется раскрыть статическую неопределимость стержня и определить площадь поперечного сечения.

Исходные данные: длина участка стержня l , площадь поперечного сечения стержня А модуль продольной упругости материала стержня Е , допускаемое напряжение .

Заданная стержневая система.

1. В результате действия внешних сил на стержень возникают две опорные реакции R 1 и R 2 . Уравнений равновесия для плоской стержневой системы можно составить одно следовательно стержень один раз статически неопределим (рис. 10,6).

2. Рассматривается статическая сторона задачи. Выбирается расчётная схема (рис. 10,6) и составляется уравнение равновесия:

3. Анализируется условие деформирования стержня и геометрическая сторона задачи, составляется уравнение совместности перемещений.

4. Рассматривается физическая сторона задачи. Условно принимая, что реакции R 1 и R 2 известны, определяются нормальные силы на участках

На основе закона Р.Гука записываются выражения перемещений на каждом участке, и затем составляется уравнение совместности перемещений в развёрнутом виде:

Рис.10. Заданный стержень, расчетная схема стержня, эпюры нормальной силы, нормального напряжения и перемещений

5. Совместное решение уравнения равновесия и уравнения совместности перемещений в развёрнутом виде позволяет определить неизвестные реакции Статическая неопределимость стержня раскрыта.

6. Строятся эпюры N z , σ z , δ (рис 10). Записывается условие прочности

и определяется площадь поперечного сечения стержня

Пример 2. Абсолютно жёсткий брус шарнирно крепится к стержням и опирается на шарнирно неподвижную опору (рис. 11,а). К брусу приложена сила F. Требуется раскрыть статическую неопределимость стержневой системы и определить величину допускаемой силы [F].

Исходные данные: длины стержней и длины участков бруса заданы в долях а , площади поперечного сечения стержней A 1 = 2A и A 2 =А, модуль упругости материала стержней Е, допускаемое напряжение .

Рис.11,а Рис. 11,б

1. Заданная стержневая система один раз статически неопределима, поскольку неизвестных реакций четыре - Н, R, R 1 , R 2 , а уравнений равновесия для плоской системы сил - три.

2. Рассматривается статическая сторона задачи (рис. 11,6). Составляются уравнения равновесия

3. Анализируется геометрическая сторона задачи (рис. 11,в) и составляется уравнение совместности перемещений. Из подобия треугольников имеем:

4. Рассматривается физическая сторона задачи. На основе закона Р.Гука определяются выражения деформаций , и затем записывается уравнение совместности перемещений в развёрнутом виде:

5. Совместное решение уравнений равновесия и развёрнутого уравнения совместности перемещений позволяет определить величины усилий в стержнях через внешнюю нагрузку N 1 =0,442P, N 2 = 0,552Р. Статическая неопределимость системы раскрыта.

Из условия прочности I стержня

допускаемая нагрузка равна

Из условия прочности II стержня

допускаемая нагрузка равна

Окончательно принимаем для стержневой системы меньшее значение . При этом рабочие напряжения во II стержне будут равны допускаемым, а первый стержень будет недогружен.

Вопросы и задания для самопроверки,

1. Какие стержни и стержневые системы называются статически неопределёнными?

2. Как определяется степень статической неопределимости?

3. Что представляют собой уравнения совместности перемещений?

4. Какие усилия и напряжения называются монтажными?

5. Какие усилия и напряжения называются температурными?

6. Перечислите основные этапы расчётов на прочность и жёсткость ста­тически неопределимых систем при растяжении (сжатии).

ВАРИАНТЫ РАСЧЕТНО - ПРОЕКТИРОВОЧНОЙ РАБОТЫ

РАСЧЕТЫ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СТЕРЖНЕЙ И СТЕРЖНЕВЫХ СИСТЕМ НА ПРОЧНОСТЬ И ЖЕСТ­КОСТЬ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)

Абсолютно жесткий брус К, нагруженный силами F;, удерживается в равновесии стальными стержнями длиной щ и крепится посредством опор­ных устройств. Требуется выполнить проектировочный расчет (найти пло­щади поперечных сечений стержней).

Последняя цифра соответствует номеру схемы (рис. 12... 14).

Данные варианта приведены в таблице 3.

В расчетах принять: Р =10 кН.

Таблица 3. Данные к задаче РПР


Статически неопределимыми называются системы, внутренние усилия в которых не могут быть определены только из уравнений равновесия (уравнений статики).

Статически неопределимые конструкции имеют так называемые лишние связи. Они могут возникать в опорах, стержнях, других элементах. «Лишними» такие связи называются потому, что они не являются необходимыми для обеспечения равновесия конструкции, а обусловливаются требованиями к ее прочности и жесткости. Такие лишние связи называются внешними. Кроме того, лишние связи могут возникать вследствие особенностей самой конструкции. Например, замкнутый контур рамы (рис. 46, г) имеет по три неизвестных внутренних усилия в каждом сечении, т.е. всего шесть, и три из них являются «лишними». Такие лишние усилия называются внутренними. По числу внешних или внутренних «лишних» связей устанавливают степень статической неопределимости системы. Она равна разности между числом неизвестных, подлежащих определению, и числом уравнений статики. При одной «лишней» неизвестной система называется один раз, или однажды статически неопределимой, при двух - дважды статически неопределимой и т.д.

Конструкция, показанная на рис. 46, а , является один раз статически неопределимой, а конструкции, приведенные на рис. 46, б и в, - дважды статически неопределимыми, на рис. 46, г - три раза статически неопределимой конструкцией.

При решении статически неопределимых задач, кроме уравнений статики, используются уравнения, учитывающие деформации элементов конструкций.

Существует несколько методов решения статически неопределимых задач: метод сравнения перемещений, метод сил, метод перемещений.

Метод сил

При расчете статически неопределимых систем в качестве неизвестных принимаются силы.

Расчет по методу сил проводят в такой последовательности:

  • 1. Устанавливают степень статической неопределимости.
  • 2. Путем удаления «лишних» связей заменяют исходную систему статически определимой, называемой основной системой. Таких систем можно построить несколько, соблюдая при этом условие их гео

метрической неизменяемости.


  • 3. Основную систему нагружают заданными внешними силами и «лишними» неизвестными усилиями, заменяющими действие удаленных связей, в результате чего получают эквивалентную систему.
  • 4. Для обеспечения эквивалентности исходной и основной систем неизвестные усилия должны быть подобраны так, чтобы деформации основной системы не отличались от деформаций исходной статически неопределимой системы. Для этого перемещения точек приложения «лишних» неизвестных по направлению их действия приравнивают нулю. Из полученных таким образом дополнительных уравнений определяют значения «лишних» неизвестных усилий. Определение перемещений соответствующих точек можно производить любым способом, однако лучше использовать при этом наиболее общий метод Мора.
  • 5. После определения значений «лишних» неизвестных усилий выполняют определение реакций и построение эпюр внутренних усилий, подбор сечений и проверку прочности обычным способом.

Канонические уравнения метода сил

Дополнительные уравнения перемещений, выражающие равенство нулю перемещений по направлениям «лишних» неизвестных, удобно составлять в так называемой канонической форме, т.е. по определенной закономерности. Покажем это на примере решения простейшей статически неопределимой системы (рис. 47, а).

Выберем в качестве основной системы консоль, отбросив шарнирную опору. Эквивалентную систему получим после приложения ее внешней силы Т 7 и «лишней» неизвестной Х (рис. 47, б).

Каноническое уравнение , выражающее равенство нулю перемещения точки В от сил Fи Х, будет

Из уравнения имеем


Для системы, имеющей две «лишние» связи, система канонических уравнений имеет вид:

  • 8 11 Х 1 + б 12 ^2 + ^1
  • 621-^1 + 622^2 "I" ^20-

Перемещения А[р И б [у, входящие в канонические уравнения, определяются по методу Мора.

Для систем, состоящих из прямолинейных элементов, вычисления перемещений удобно производить по способу Верещагина.

Например, для задачи, изображенной на рис. 47, перемножая эпюры (рис. 48), получим коэффициенты канонического уравнения:

1 2 I 3 1 I /I 2 1 5 Я1 3

Е]Ь ЛЛ =-/ / -/ = -, Е]А ЛР = -------- +-------.

1 11 2 3 3 1 1Р 2 2 2 2 3 2/ 48 Е]

Получим Хл - - = - Е.

Определив силу Х, мы фактически нашли реакцию опоры Яв. Далее задача определения внутренних силовых факторов может быть решена, как обычно, с помощью метода сечений.

Как уже известно, при расчете некоторых стержневых систем для определения усилий в них недостаточно использовать одни лишь уравнения статики, а необходимо составлять дополнительные уравнения - уравнения деформаций (перемещений). Такие системы называются статически неопределимыми.

В настоящей главе рассмотрены расчеты плоских статически неопределимых стержневых систем. Аналогичными способами рассчитывают и пространственные статически неопределимые системы.

Характерной особенностью статически неопределимых систем (в отличие от статически определимых) является то, что распределение усилий в них зависит не только от внешних сил, но и от соотношений между поперечными размерами отдельных элементов. Если элементы систем изготовлены из различных материалов, то распределение усилий также зависит от модулей упругости этих материалов (см. § 9.2).

Расчет статически неопределимой системы начинают с анализа ее схемы. Анализ необходим прежде всего для того, чтобы установить степень статической неопределимости.

Степень статической неопределимости равна числу лишних связей, удаление которых превращает статически неопределимую систему в статически определимую, геометрически неизменяемую систему.

Геометрически неизменяемой называется такая система, изменение фермы которой возможно лишь в связи с деформациями ее элементов.

Статически определимая система не имеет ни одной лишней связи; удаление из нее хотя бы одной связи превращает ее в геометрически изменяемую систему, т. е. в механизм.

Балка, показанная на рис. 1.12, а, является системой, один раз (или однажды) статически неопределимой, так как один из опорных стержней представляет собой лишнюю (избыточную) связь балки с опорой (с основанием).

Отбросив один из опорных стержней (рис. 1.12, б) или включив в балку один шарнир (рис. 1.12, в), получим статически определимую, геометрически неизменяемую систему.

Систему, состоящую из ряда элементов (прямых или криволинейных), жестко (без шарниров) связанных между собой и образующих замкнутую цепь, будем называть замкнутым контуром.

Прямоугольная рама, изображенная на рис. 2.12, я, представляет собой замкнутый контур. Она трижды статически неопределима, так как для превращения ее в статически определимую необходимо, например, перерезать один из ее элементов (рис. 2.12, б) и тем самым устранить три лишние связи. Реакциями этих связей являются продольная сила, поперечная сила и изгибающий момент, действующие в месте разреза; их нельзя определить при помощи уравнений статики. В аналогичных условиях в смысле статической неопределимости находится любой замкнутый контур, который всегда трижды статически неопределим.

Примером сооружения с одним замкнутым контуром является также система, изображенная на рис. 3.12, а. Замкнутым контуром является и бесшарнирная рама, изображенная на рис. 3.12, б; она ограничена снизу землей, которую можно рассматривать как бесконечно жесткий стержень.

В рамной конструкции, представленной на рис. 4.12, а, верхний контур снабжен шарниром; в разрезе, проведенном по этому шарниру, действуют только два внутренних усилия: N и Q (рис. 4.12, б). Такой контур дважды статически неопределим. Если рассматривать всю систему в целом, то она пять раз статически неопределима, так как нижний контур рамы замкнутый и, следовательно, неопределим трижды.

Систему, освобожденную от лишних связей, можно представить состоящей из двух защемленных внизу стержней с горизонтальными консолями (рис. 4.12, б).

Выяснить степень статической неопределимости этой системы можно иначе. Верхний контур рамы, имеющий один внутренний шарнир, дважды статически неопределим (имеет две лишние связи). Кроме того, каждая из заделок дает три составляющие опорной реакции (две силы и момент), т. е. на раму наложено шесть внешних связей, а уравнений статики для плоской системы можно составить лишь три. Следовательно, три внешние связи являются лишними, а всего имеется пять лишних связей, т. е. система пять раз статически неопределима.

Необходимо заметить, что исключение лишних связей для превращения одной и той же статически неопределимой конструкции в статически определимую можно произвести различными способами, однако число отбрасываемых связей всегда одно и то же. Так, например, статически определимые системы, изображенные на рис. 1.12, б, в, получены из статически неопределимой системы (см. рис. 1.12, а); одна - путем удаления промежуточной опоры, а другая - путем постановки промежуточного шарнира, т. е. удаления связи, препятствующей взаимному повороту частей балки, расположенных по обе стороны от введенного шарнира.

Включение шарнира в узел рамы, в котором сходятся два стержня, или же установка его в любое место на оси стержня нарушает (снимает) одну связь и снижает общую степень статической неопределимости системы на единицу. Такой шарнир будем называть одиночным, или простым.

При удалении связей системы необходимо следить за тем, чтобы получаемая конструкция была геометрически неизменяема. Поэтому в раме, показанной на рис. 5.12, а, имеющей одно лишнее опорное закрепление, было бы ошибочным удаление вертикального стерженька (рис. 5.12, б), так как оставшиеся три стерженька не могли бы препятствовать повороту рамы вокруг точки , в которой пересекаются их оси.

Правильный вариант удаления лишнего стержня показан на рис. 5.12, б.

Для конструкций со сложным внутренним образованием можно применить следующий общий прием определения степени статической неопределимости. Идея его заключается в том, что каждый шарнир, включенный в узел, соединяющий k стержней, снижает степень статической неопределимости на так как такой шарнир заменяет одиночных шарниров (рис. 6.12, а). Поэтому для определения степени статической неопределимости конструкции необходимо взять утроенное количество замкнутых контуров (предполагая, что все шарниры, в том числе и опорные, заменены жесткими соединениями) и затем уменьшить его на число включенных в конструкцию одиночных шарниров, учитывая при этом, что один общий шарнир эквивалентен одиночным шарнирам.

Представим это в виде формулы

где - степень статической неопределимости системы; - число замкнутых контуров в конструкции в предположении отсутствия шарнирных соединений; - число одиночных шарниров; шарнир, соединяющий два стержня, считается за один (одиночный шарнир), соединяющий три стержня - за два одиночных шарнира (двойной шарнир) и т. д.

На рис. 6.12, б изображены одиночные шарниры, на рис. 6.12, в - двойные, а на рис. 6.12, г - тройные.

Шарнирно неподвижную опору (рис. 6.12, д) можно изображать в виде одного шарнира, связывающего конструкцию с землей (рис. 6.12, е). Если такая опора соединяет с землей один прямой или ломаный элемент конструкции (рис. 6.12, ж) и то ее следует рассматривать как одиночный шарнир, если два элемента (рис. 6.12, з), - то как двойной шарнир, и т. д.

Рассмотрим теперь раму, изображенную на рис. 7.12, а. Эту раму можно представлять как один замкнутый контур с введен ными в него двумя одиночными шарнирами (рис. 7.12, б). Степень ее статической неопределимости на основании формулы (1.12) равна единице:

Раму, изображенную на рис. 7.12, в, можно рассматривать как состоящую из двух замкнутых контуров с введенными в нее пятью одиночными шарнирами (рис. 7.12, г). Следовательно, степень статической неопределимости этой рамы равна единице:

Систему, изображенную на рис. 7.12, д, можно рассматривать как три замкнутых контура, в которые введены три одиночных и один двойной шарнир (посередине правой стойки).

Следовательно, эта система четырежды статически неопределима:

Если в статически определимой системе устранить какую-либо связь, то система, как отмечалось, превратится в геометрически изменяемую. Следовательно, статически определимая система содержит в своем составе такое количество связей, которое является минимально необходимым для обеспечения ее геометрической неизменяемости; избыточные связи (сверх этого количества) создают статическую неопределимость.

Из любой статически неопределимой системы можно устранить по крайней мере одну связь без нарушения ее изменяемости; однако удаление некоторых связей может превратить статически неопределимую систему в геометрически изменяемую. Такие связи статически неопределимой системы являются абсолютно необходимыми. Усилия в них всегда можно определить при помощи одних лишь уравнении статики.

Примером абсолютно необходимых связей являются вертикальные опорные стержни рамы, показанной на рис. 5.12, а; удаление одного из них делает раму геометрически изменяемой.

Связи, удаление которых не превращает статически неопределимую систему в геометрически изменяемую, называются условно необходимыми. Усилия в них нельзя определить при помощи одних лишь уравнений статики. Примером таких связей являются горизонтальные опорные стержни рамы, изображенной на рис. 5.12, а.


Статически неопределимой называется такая система, которая не может быть рассчитана при помощи одних только уравнений статики, так как имеет лишние связи. Для расчета таких систем составляются дополнительные уравнения, учитывающие деформации системы.

Статически неопределимые системы обладают рядом характерных особенностей:

1. Статически неопределимые конструкции являются более жесткими, чем соответствующие статически определимые , так как имеют дополнительные связи.
2. В статически неопределимых системах возникают меньшие внутренние усилия, что определяет их экономичность по сравнению со статически определимыми системами при одинаковых внешних нагрузках.
3. Нарушение лишних связей в статически неопределимой системе не всегда приводит к разрушению, в то время как потеря связи в статически определимой системе делает ее геометрически изменяемой.
4. Для расчета статически неопределимых систем необходимо предварительно задаваться геометрическими характеристиками поперечных сечений элементов, т.е. фактически их формой и размерами, так как их изменение приводит к изменению усилий в связях и новому распределению усилий во всех элементах системы.
5. При расчете статически неопределимых систем необходимо заранее выбрать материал конструкции, так как необходимо знать его модули упругости.
6. В статически неопределимых системах температурное воздействие, осадка опор, неточности изготовления и монтажа вызывают появление дополнительных усилий.

Основными методами расчета статически неопределимых систем являются:

1. Метод сил . Здесь в качестве неизвестных рассматриваются усилия – силы и моменты.
2.Метод перемещений. Неизвестными являются деформационные факторы – углы поворотов и линейные смещения.
3.Смешанный метод. Здесь часть неизвестных представляет собой усилия, а другая часть – перемещения.
4. Комбинированный метод. Используется при расчете симметричных систем на несимметричные нагрузки. Оказывается, что на симметричную составляющую заданной нагрузки систему целесообразно рассчитывать методом перемещений, а на обратносимметричную составляющую – методом сил.
Помимо указанных аналитичеких методов при расчете особо сложных систем используются различные численные методы.

Канонические уравнения метода сил

Для получения дополнительных уравнений, о которых говорилось в предыдущем параграфе, нужно прежде всего превратить заданную, n раз статически неопределимую систему, в статически определимую, удалив из нее лишние связи. Полученная статически определимая система называется основной. Отметим, что преобразование заданной системы в статически определимую не является обязательным. Иногда используется модификация метода сил, в которой основная система может быть статически неопределимой , однако изложение этого вопроса выходит за рамки этого пособия. Устранение каких-либо связей не изменяет внутренние усилия и деформации системы, если к ней приложить дополнительные силы и моменты, представляющие собой реакции отброшенных связей. Значит, если к основной системе приложить заданную нагрузку и реакции удаленных связей, то основная и заданная системы станут эквивалентными.

В заданной системе по направлениям имеющихся жестких связей, в том числе и тех связей, которые отброшены при переходе к основной системе, перемещений быть не может, поэтому и в основной системе перемещения по направлениям отброшенных связей должны равняться нулю. А для этого реакции отброшенных связей должны иметь строго определенные значения.

Условие равенства нулю перемещения по направлению любой i-ой связи из n отброшенных на основании принципа независимости действия сил имеет вид:

где первый индекс означает направление перемещения и номер отброшенной связи, а второй указывает на причину, вызвавшую перемещение, т.е. - это перемещение по направлению i-ой связи, вызванное реакцией k-ой связи; - перемещение по направлению i-ой связи, вызванное одновременным действием всей внешней нагрузки.

В методе сил реакцию k-ой связи принято обозначать через Xk. С учетом этого обозначения и в силу справедливости закона Гука перемещения можно представить в виде:

где - единичное (или удельное) перемещение по направлению i-ой связи, вызванное реакцией т.е. реакцией, совпадающей по направлению с Xk, но равной единице.

Подставляя (2) в (1), получим:

Физический смысл уравнения (3): перемещение в основной системе по направлению i-ой отброшенной связи равно нулю.

Записывая выражения, аналогичные (3), для всей совокупности отброшенных связей, получим систему канонических уравнений метода сил :

Вид уравнения (4), т.е. количество слагаемых в каждом из них и их общее число, определяется только степенью статической неопределимости системы и не зависит от ее конкретных особенностей.

Коэффициенты системы канонических уравнений (4) определяются методом Мора-Верещагина путем перемножения соответствующих эпюр. Все эти коэффициенты, как указывалось выше, представляют собой перемещения; коэффициенты, стоящие при неизвестных – единичные перемещения, а свободные члены – грузовые. Единичные перемещения делятся на главные, расположенные по главной диагонали и имеющие одинаковые индексы и побочные (). Главные перемещения всегда положительные, в отличие от побочных. Симметрично расположенные перемещения в соответствии с теоремой о взаимности перемещений равны друг другу, т.е. .

Алгоритм расчета методом сил

Независимо от особенностей рассматриваемой конструкции, можно выделить следующую последовательность расчета статически неопределимых систем методом сил :

1. Определить степень статической неопределимости .
2. Выбрать основную систему.
3. Сформировать эквивалентную систему.
4. Записать систему канонических уравнений .
5. Построить единичные и грузовые эпюры внутренних силовых факторов, возникающих в элементах рассматриваемой конструкции.
6. Вычислить коэффициенты при неизвестных и свободные члены системы канонических уравнений.
7. Построить суммарную единичную эпюру.
8. Выполнить универсальную проверку коэффициентов при неизвестных и свободных членов.
9. Решить систему (4), т.е. определить реакции лишних связей.
10. Построить эпюры возникающих внутренних силовых факторов для заданной системы (иначе говоря, окончательные эпюры).
11. Выполнить статическую и кинематическую проверки.
Отметим, что пункты 7, 8, 11 приведенного алгоритма не являются безусловно необходимыми, хотя и позволяют контролировать правильность выполнения расчета. А для систем с одной лишней связью пункты 7 и 8 просто лишены смысла, так как в этом случае суммарная единичная эпюра совпадает с единичной.
Остановимся подробнее на некоторых из вышеперечисленных этапов расчета.

Выбор основной системы

Это важнейший этап расчета, так как рациональный выбор основной системы существенно упрощает вычислительную работу. Рассмотрим возможные способы удаления лишних связей, что и определяет вид основной системы.

1. Отбрасывание лишних связей осуществляется полным удалением некоторых опор или их заменой опорами с меньшим числом связей. Реакции, действующие в направлениях отброшенных связей, являются лишними неизвестными. На рис.1,б, в, г показаны различные варианты эквивалентной системы, полученные этим способом для рамы (рис.1,а).

2.Постановка шарниров в промежуточных сечениях стержней позволяет в каждом таком сечении установить связь, соответствующую изгибающему моменту. Эти моменты являются лишними неизвестными. Для рамы, имеющей степень статической неопределимости n=3 (рис.2,а), при выборе основной системы необходимо поставить три шарнира. Положение этих шарниров может быть произвольным, но удовлетворяющим требованию геометрической неизменяемости системы (рис.2,б).

3. Рассечение стержня устраняет три связи, соответствующие внутренним усилиям M, Q, N (рис.2,в). В частных случаях (рис.2,г) рассечение стержня по шарниру освобождает две связи (рис.2,д), а рассечение прямолинейного стержня с шарнирами по концам – одну связь (рис.2,е).

Среди связей статически неопределимой системы различают абсолютно необходимые и условно необходимые. К абсолютно необходимым относятся связи, при удалении которых система становится геометрически изменяемой. Для абсолютно необходимой связи характерна статическая определимость усилия в ней, т.е. реакция такой связи может быть вычислена из условия равновесия. При выборе основной системы абсолютно необходимые связи отбрасывать нельзя.

Связи, при удалении которых система продолжает оставаться геометрически неизменяемой, называются условно необходимыми. Система, у которой удалили такую связь, может являться основной системой метода сил .

Вычисление коэффициентов и свободных членов канонических уравнений

Этому этапу расчета предшествует построение единичных и грузовых эпюр внутренних силовых факторов (для балок и рам – эпюр изгибающих моментов). Единичные эпюры строятся от действия безразмерной единичной силы или безразмерного единичного момента, совпадающих по направлению с направлением соответствующей лишней неизвестной в эквивалентной системе, и обозначаются через , а единичная эпюра – через .

Грузовая эпюра строится от внешней нагрузки, приложенной к основной системе. При этом можно строить одну эпюру от одновременного действия всех внешних нагрузок или несколько эпюр, отдельно от каждой из приложенных нагрузок. Такое разбиение одной грузовой эпюры на несколько более простых, как правило, целесообразно только тогда, когда среди действующих нагрузок есть равномерно распределенная, и эпюра моментов на соответствующем участке под ней является знакопеременной. При этом в каждом каноническом уравнении число свободных членов будет равно числу построенных грузовых эпюр.

Единичные и грузовые перемещения (коэффициенты и свободные члены канонических уравнений) в общем случае можно вычислить методом Мора. Для балок и рам это можно сделать при помощи правила Верещагина.

Универсальная проверка коэффициентов и свободных членов канонических уравнений

Для выполнения универсальной проверки необходимо построить суммарную единичную эпюру - эпюру моментов от одновременного действия всех единичных сил, приложенных к основной системе:

Перемножим суммарную единичную эпюру с эпюрой :

Таким образом результат перемножения суммарной и i-ой единичной эпюр - это перемещение по направлению i-ой связи от совместного действия единичных лишних неизвестных. Это перемещение равно сумме коэффициентов i-го канонического уравнения:

Такая проверка называется построчной и выполняется для каждого канонического уравнения.
Вместо n построчных проверок чаще всего выполняется одна – универсальная поверка, которая состоит в перемножении суммарной единичной эпюры самой на себя и проверке условия:

Если универсальная проверка выполняется, значит единичные перемещения вычислены правильно; если нет – необходимо выполнить построчные проверки, что позволит уточнить перемещение, при вычислении которого допущена ошибка.

Для выполнения проверки грузовых перемещений необходимо перемножить суммарную единичную и грузовую эпюры изгибающих моментов:

Таким образом, проверка свободных членов системы канонических уравнений (4) состоит в выполнении условия.

Общие сведения

Расчет статически неопределимых систем методом сил начинают с вы­явления степени статической неопределимости. Степень статической не­определимости любой системы может быть установлена по формуле, которая для выявления степени статической неопределимости рам будет иметь вид:

Л = 3К - Ш, (23)

где Л – число лишних связей, К – число контуров, а для неразрезных балок - формулой (24):

Л = С оп - 3, (24)

где С оп - число опорных стержней.

Остановимся на применении формулы (23).

Пример 7.1.

Пользуясь формулой (23), опреде­лить степень статической неопределимости рамы, изображенной на рис. 7.1.

Рис. 7.1. Рама

Решение

Рама состоит из двух замкнутых контуров I и II. Шарнирно-неподвижная опора А равноценна одному простому шарниру, шарнирно-подвижная опора В - двум шарнирам. Следова­тельно, Ш= 1 + 2 = 3.

Степень статической неопределимости Л = 3К - Ш=3∙2 - 3 ==3 - рама трижды ста­тически неопределима.

Пример 7.2.

Определить степень статической неопределимости рамы, приведенной на рис. 7.2.

Рис. 7.2. 3-х контурная рама. Рис. 7.3. 6-ти контурная рама

Решение

Рама имеет три замкнутых контура (I, II и III). Сум­марное число шарниров Ш = 6 (два простых шарнира - Е и F и две шарнирно подвижные опоры -A и D). Число лишних связей Л =3∙3 - 6=3. Следовательно, рама трижды статически неопределима.

Пример 7.3.

Определить степень статической неопределимости рамы, изображённой на рис. 7.3.

Решение

В этой раме шесть замкнутых контуров. Простых шар­ниров - три (шарниры F,H и I ). Шарнир G - двукратный, как соединяю­щий три стержня. Каждая из шарнирно-подвижных опор А, В, D и Е эквивалентна двум простым шарнирам, а шарнирно-неподвижная опора С - одному. Следовательно, Ш = 1∙3 + 2∙1 + 2∙4 + 1 =14. Тогда степень статической неопределимости Л =3∙6-14 =4. Таким образом, рама имеет четыре лишние связи, т. е. является четырежды статически неопределимой.



После того как будет установлена степень статической неопределимости, выбирают основную систему.

Выбор основной системы

Основной системой будем называть геометрически неизме­няемую статически определимую систему, полученную из заданной стати­чески неопределимой путем устранения лишних связей и нагрузки.

На рис. 7.4., а показана статически неопределимая рама - заданная система. Степень статической неопределимости этой системы:

Л = 3К - Ш =3∙1-0 =3.

Следовательно, чтобы из заданной системы получить основную систему, надо освободить раму от нагрузки q и отбросить три лишние связи; по­следнее может быть выполнено различными способами, но в результате применения любого из них полученная основная система должна быть геометрически неизменяемой.

Так, например, на рис. 7.4., б показана основная система, полученная путем устранения нагрузки q и правой защемляющей опоры В, эквивалент­ной трем лишним связям.

Рис. 7.4. Выбор основной системы

Теперь сечение В основной системы может перемещаться по горизонталь­ному и вертикальному направлениям и поворачиваться в плоскости рамы на некоторый угол, т. е. в основной системе стали возможными те перемещения, которым в заданной системе препятствует правая защемляющая опора.

Чтобы устранить различие между заданной и основной системами, поступим так, как показано на рис. 7.4., в: нагрузим основную систему заданной нагрузкой q и вточке В ее, по направлениям указанных переме­щений сечения В, приложим соответствующие им пока неизвестные, горизонтальную и вертикальную силы Х 1 ; Х 2 и момент Х 3 .

Величины Х 1 ; Х 2 ; X 3 называются лишними неизвестными и являются искомыми реакциями лишних связей, заменяющими действие отброшен­ных лишних связей на заданную систему.

Обращаем внимание, на то, что основная система, нагружен­ная заданной нагрузкой и лишними неизвестными, в отношении внут­ренних усилий и перемещений эквивалентна заданной статически неопре­делимой.

Кроме того, условимся в дальнейшем, как это принято в практических расчетах, основную систему на отдельном рисунке не изображать и взамен ее приводить рисунок выбранной основной системы, нагруженной задан­ной нагрузкой и лишними неизвестными.

Далее составляют уравнения совместности перемещений, каждое из которых должно выражать условие равенства нулю суммарного пере­мещения по направлению той или иной, отброшенной связи (неизвестной силы) от заданной нагрузки и всех лишних неизвестных. Эти уравнения, написанные в определенной, раз навсегда установленной форме, называют каноническими уравнениями метода сил. Число их должно равняться числу отброшенных связей. Для рассматриваемой рамы необходимо составить, таким образом, три канонических уравнения, имеющих следующий вид:

δ 11 X 1 + δ 12 X 2 + δ 13 X 3 + ∆ 1 p = 0

δ 21 X 1 + δ 22 X 2 + δ 23 X 3 + ∆ 2 p = 0 (25)

δ 31 X 1 + δ 32 X 2 + δ 33 X 3 + ∆ 3 p = 0

Где δ 11 -перемещение точки приложения силы X 1 по направлению этой силы от единичной силы = 1;

δ 11 X 1 -перемещение той же точки в том же направлении, вызванное полным значением X 1 ;

δ 12 - перемещение точки приложения силы X 1 по направлению этой силы, вызванное единич­ной силой

δ 12 X 2 - перемещение той же точки в том же направле­нии, вызванное полным значением силы Х 2 ;

δ 13 - перемещение точки приложения силы Х х по направлению этой силы от единичной силы = 1;

δ 13 X 3 - перемещение той же точки в том же направлении, вызван­ное полным значением силы Х 3 ;

1 p -перемещение той же точки в том же направлении, вызванное заданной нагрузкой; δ 21 X 1 - перемещение точки приложения силы Х 2 по направлению этой силы, вызванное силой X 1 , и т. д.

Следует иметь в виду, что один раз составленные в общем виде п канонических уравнений с п неизвестными применимы для любой п раз стати­чески неопределимой системы. Так, уравнения (25) справедливы для любой трижды статически неопределимой системы.

Составив канонические уравнения метода сил, следует перейти к вы­числению единичных δ ik и грузовых ∆ ip перемещений.

Для этого предварительно введем понятия о грузовом и единичном состояниях основной системы.

Грузовым назовем то состояние основной системы, при котором она находится только под действием заданной нагрузки.

Единичным будем называть состояние основной системы, при ко­тором она нагружена только одной силой, равной единице е = 1, дейст­вующей в направлении неизвестной реакции X t .

Заметим, что число единичных состояний основной системы должно соответствовать степени статической неопределимости заданной системы,

т. е. числу лишних неизвестных. Изобразив на рисунках грузовое и отдельно все единичные состояния основной системы, строят соответствующие им грузовую М р и единичные M 1 , M 2 , ..., М п эпюры изгибающих моментов.

Наконец, используя способ перемножения эпюр, вычисляют единич­ные δ ik и грузовые ∆ ip перемещения.

Перемножая эпюры, следует помнить, что на основании теоремы о взаимности пере­мещений (теоремы Максвелла) единичные перемещения с взаимно пере­ставленными индексами равны между собой, т. е. δ ik = δ ki .

Вычисленные значения δ ik и ∆ ip подставляют в канонические уравнения и решают полученную систему уравнений, в результате чего нахо­дят значения неизвестных реакций связей X 1 , X 2 , ..., Х п.

Нагрузив те­перь основную систему заданной нагрузкой и уже известными силами X 1 = А 1 ;Х 2 = А 2 , ..., Х п = А п, строят обычным путем (как для статиче­ски определимой системы) эпюры Q, М и N, которые и являются оконча­тельными эпюрами поперечных сил, изгибающих моментов и продольных сил для заданной системы.

Окончательную эпюру изгибающих моментов можно также получить путем суммирования ординат эпюры М р с соответствующими ординатами эпюры

После определения неизвестных можно сразу получить эпюру М, по которой построить эпюру Q, а продольные силы определить из условий равновесия вырезаемых узлов рамы. Опорные реакции в этом случае находят в последнюю очередь, используя эпюры Q, М и N,

Умноженными на X 1 , ординатами эпюры , умноженными на Х 2 ..., и ординатами эпюры , умноженными на Х п, т. е.

Единичные перемещения с одинаковыми индексами (δ 11 , δ 22 , δ 33 и т.д.) принято называть главными перемещениями , а с разными индексами

(δ 12 , δ 13 , δ 23 и т.д.) - побочными .

Главные перемещения никогда не обращаются в нуль и всегда имеют положительное значение, так как в этом случае эпюры умножаются сами на себя, т. е. и площадь ω и ордината у берутся из одной и той же эпюры.

Побочные перемещения могут быть положительными, отрицательными, а при удачном выборе основной системы и равными нулю. В последнем случае в значительной мере сокращаются и упрощаются операции по вы­числению перемещений.

На рис. 7.4., б основная система выбрана неудачно, так как для нее ни одно из побочных перемещений не обратится в нуль. Ниже эта рама будет рассчитана, при более рациональном выборе основной системы.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png