Следует отметить, что схемы, представленные на рис. 8.14, предназначены для преобразования входных сигналов только положительной полярности. При необходимости обработки входных сигналов с отрицательной полярностью можно поменять направление включения диодов на обратное. Для обработки в одном устройстве положительных и отрицательных входных сигналов используют два встречно включенных нелинейных элемента. В качестве нелинейных элементов могут быть использованы биполярные транзисторы (их переходы эмиттер-база). При этом может быть увеличен на один – два порядка диапазон обрабатываемых сигналов и повышена точность обработки, но одновременно повышается и сложность устройства. Усилители (см. рис. 8.14) обычно используются в устройствах перемножения и деления аналоговых сигналов

и в устройствах шумоподавления в усилителях звуковой частоты.

9. РЕГУЛИРОВКИ В УСИЛИТЕЛЯХ

9.1. Общие положения

В зависимости от технического задания на усилитель и его функционального назначения в усилительном устройстве могут быть предусмотрены регулировки самых различных параметров: усилительных свойств, частотных свойств в полосе пропускания и ширины самой полосы пропускания, фазовых характеристик, динамического диапазона, входных и выходных сопротивлений

и т.д. Все эти регулировки могут быть ручными и автоматическими. Решения о необходимости использования ручных регулировок, об их глубине в каждом конкретном случае принимаются и осуществляются оператором, обслуживающим усилитель. Автоматические регулировки осуществляются в усилителе самостоятельно под воздействием изменения заданных условий функционирования. Регулировки могут быть плавными , когда регулируемый параметр меняется плавно и непрерывно, и дискретными , когда регулируемый параметр изменяется скачками. Кроме постоянно действующих регулировок в схему усилителя могут быть введены подстроечные элементы, используемые при первоначальной настройке, ремонте или профилактических работах. Наиболее часто в усилителях используются регулировки коэффициента усиления и регулировки частотных свойств. Последние, при их использовании в усилителях сигналов звуковой частоты, называются регулировками тембра.

9.2. Регулировка усиления

Предназначение регуляторов усиления:

предохранение усилителя от перегрузок в случае, когда динамический диапазон сигнала превышает динамический диапазон усилителя;

поддержание постоянной величины коэффициента усиления при замене активных элементов, старении деталей усилителя, изменении питающих напряжений и т.д.;

изменение величины выходного сигнала в нужных пределах.

Для целей изменения коэффициента усиления можно использовать потенциометрический делитель напряжения, обратную связь с переменной глубиной и изменение режима работы активных элементов.

Потенциометрический регулятор усиления может быть дискретным и плавным (рис. 9.1).

Принцип действия в обоих регуляторах один и тот же. Выходной сигнал u2 выделяется на нижнем плече делителя. Согласно второму закону Кирхгоффа, его величина пропорциональна величине сопротивления, образующего нижнее плечо. Коэффициенты передачи дискретного и плавного регулятора соответственно имеют вид

К Д = u 2

(R 2 + R 3 )

; КП =

R 1 + R 2 + R 3

R1 + R 2

Дискретный регулятор оказывается обычно сложнее плавного и используется чаще всего в измерительной аппаратуре.

Если регулятор усиления должен работать в широкой полосе частот, то приходится учитывать реактивные элементы, подключаемые к нижнему плечу делителя. Такой регулятор, как правило, строится по параллельной схеме (рис. 9.2), собираемой из нескольких делителей с соответствующими коэффициентами деления.

К нижнему плечу делителя оказывается подключенной входная емкость следующего каскада, которая и приводит к частотной зависимости коэффициента передачи. При этом полное сопротивление нижнего плеча с ростом частоты уменьшается и при активном сопротивлении верхнего плеча коэффициент деления падает с увеличением частоты. Для сохранения постоянного коэффи

циента передачи делителя во всем диапазоне частот верхнее плечо приходится шунтировать дополнительной емкостью, которая выбирается из условия равенства постоянных времени верхнего и нижнего плеча.

u 1 R 2

C 2 R 4

Так, для ступенчатого регулятора, представленного на рис. 9.2, должны соблюдаться следующие равенства:

R 1C 1 = R 2C 2 и R 3C 3 = R 4C 4 .

Для облегчения наладки подобных делителей в емкости, шунтирующие как нижнее, так и верхнее плечо, обычно включают подстроечные конденсаторы.

В настоящее время ступенчатые регуляторы начали широко применяться и в усилителях сигналов звуковой частоты. Шаг деления в этом случае вы-

бирается небольшим (1 – 2дБ), а механические переключатели заменяются на-

бором электронных ключей, состояние которых фиксируется запоминающим устройством.

Плавная регулировка усиления осуществляется с помощью переменных сопротивлений, используемых в качестве делителей напряжения сигнала (см. рис. 9.1, б). При проектировании регуляторов громкости для усилителей сигналов звуковой частоты приходится дополнительно учитывать особенности слухового восприятия человека. Человеческое ухо устроено таким образом, что ощущение громкости звука у человека пропорционально логарифму уровня сигнала. Поэтому если взять в качестве регулятора громкости переменный резистор с линейной зависимостью сопротивления от положения движка, то будет казаться, что громкость очень быстро растет в самом начале поворота движка и почти не изменяется на всей второй половине его движения. Использование резистора с показательным законом изменения сопротивления в зависимости от положения движка позволяет получить ощущение равномерного изменения громкости, пропорционального углу поворота движка. Правда, получить такую зависимость на практике мешают сравнительно малые сопротивления, шунтирующие регулятор со стороны источника сигнала и нагрузки и нарушающие необходимый закон изменения сопротивления.

Вторая особенность регуляторов

СН

СВ

громкости связана с изменением частотной

чувствительности человеческого уха при из-

менении громкости сигнала. Дело в том, что

с понижением уровня сигнала чувствитель-

ность уха к верхним и нижним частотам ос-

лабевает. Это ослабление быстро возрастает

с уменьшением громкости. Поэтому для со-

хранения равномерной частотной характеристики восприятия звука при уменьшении уровня громкости необходимо уменьшать сигнал на средних частотах сильнее, чем на нижних и верхних. Такой эффект достигается путем использования тонкомпенсированных регуляторов громкости (рис. 9.3). В этом регуляторе введены дополнительные цепи коррекции частотной характеристики. Конденсатор СВ осуществляет коррекцию в области верхних частот. Емкость СВ выбирается небольшой величины и поэтому не оказывает никакого влияния на область низких и средних частот. На высоких частотах полное сопротивление верхнего плеча делителя уменьшается, что обеспечивает

подъем частотной характеристики на этих частотах по отношению к области средних частот. Постоянная времени последовательного соединения CН RН выбрана таким образом, чтобы эта цепочка шунтировала нижнее плечо делителя в области средних и более высоких частот и тем самым создавала относительный подъем для низкочастотных составляющих спектра сигнала. По мере движения среднего вывода потенциометра вниз этот эффект выпячивания низких и высоких частот по отношению к средним усиливается. Глубина регулировки уровня, оцениваемая как отношение уровней сигнала в крайних положениях регулятора, для описанной выше регулировки громкости лежит в пределах 35 – 45дБ.

Плавное изменение уровня сигнала на выходе усилителя можно осуществить, меняя режим работы активного элемента или глубину обратной связи. Примеры таких схем представлены на рис. 9.4.

В схеме на рис. 9.4, а производится плавная регулировка усиления за счет изменения положения рабочей точки. Увеличение сопротивления R P приводит к уменьшению тока через транзистор, снижению его крутизны и, следовательно, коэффициента усиления данного каскада. Глубина регулировки ограничена тем, что при значительном уменьшении тока эмиттера появляются дополнительные нелинейные искажения и увеличивается влияние собственных шумов.

В схеме на рис. 9.4, б переменное сопротивление R P создает местную отрицательную обратную связь по току, последовательную по входу по переменной составляющей. Глубина обратной связи и соответственно коэффициент усиления зависят от величины сопротивления RP . Если в предыдущей схеме конденсатор СЭ подключить только параллельно сопротивлению RЭ , то в ней будут действовать оба метода и глубина регулировки значительно увеличится.

Управление коэффициентом усиления за счет изменения положения рабочей точки (см. рис. 9.4, в) широко применяется в системах автоматической регулировки усиления (АРУ). В этом случае в цепь базового делителя подается управляющее напряжение UУПР , величина которого определяется значением выходного сигнала.

СЭ

R И R Д

R И R Д

U УПР

При увеличении выходного сигнала под воздействием входного, напряжение UУПР запирает транзистор, а при уменьшении - открывает, поддерживая выходное напряжение постоянным при очень значительных изменениях сигнала на входе.

Следует отметить, что все перечисленные методы регулировки усиления одинаково хорошо работают в усилителях на биполярных и полевых транзисторах.

Изменение глубины обратной

связи с целью изменения коэффици-

ента усиления широко используется

в усилителях на ОУ. Для осуществ-

ления такой регулировки одно из со-

противлений в цепи обратной связи

делают переменным (см. рис. 9.5).

На рис. 9.5,а представлен ре-

гулятор на ОУ с инвертирующим

входом. Изменение положения пол-

зунка сопротивления RP приводит к

изменению глубины обратной связи и соответственно к изменению коэффициента усиления. Одновременно изменение глубины обратной связи влечет за собой изменение входного и выходного сопротивлений. Отличие схемы (см. рис. 9.5, б) от предыдущей состоит в том, что в ней использовано неинвертирующее включение ОУ.

Определенный интерес представляет схема на рис. 9.6. Здесь переменное сопротивление выполняет две функции. Изменение положения движка приводит к изменению уровня сигнала на входе ОУ и одновременно к изменению глубины обратной связи. Таким образом, зависимость коэффициента передачи от угла поворота потенциометра становится показательной и в схеме можно использовать регулятор с линейно изменяющимся сопротивлением.

Можно избежать помех, возникающих из-за нестабильности подвижного контакта, если вместо механического регулирующего элемента использовать сопротивления, управляемые напряжением или током. В качестве таких управляемых переменных сопротивлений используются полевые транзисторы и оптроны . Сопротивление канала полевого транзистора линейно зависит от напряжения между затвором и истоком, о чем свидетельствует семейство выходных характеристик, расходящееся веером при напряжении на стоке, близком к нулю . Включив такое сопротивление в качестве нижнего плеча делителя в цепи обратной связи (рис. 9.7, а), и меняя управляющее напряжение на затворе UУПР , можно регулировать глубину обратной связи и соответственно коэффициент усиления. С увеличением отрицательного управляющего напряжения на затворе сопротивление канала возрастает, растет глубина обратной

UУПР

R ОС

U УПР

Изменение тока через диод под воздействием напряжения UУПР приводит к изменению сопротивления оптрона, включенного в верхнее плечо делителя цепи обратной связи, и соответственно к изменению коэффициента усиления. Подобные схемы очень удобны для создания автоматических систем регулировки усиления и систем дистанционного управления коэффициентом усиления.

Место включения регулятора в схему (плавного и дискретного) определяется несколькими условиями.

С Р2

С Р1

Чтобы усилитель не перегружался и чтобы уже в первых каскадах не возникали нелинейные искажения, регулятор усиления желательно ставить по возможности ближе к входу. Однако если регулятор громкости включить на входе первого каскада, то в этом случае при

Усилитель низких частот (УНЧ) — это устройство, о предназначении которого знает каждый меломан. Этот компонент аудиосистемы позволяет улучшить качество звучания акустики в целом. Но как и любые другие электронные устройства, АУ может выйти из строя. Подробнее о том, как производится ремонт своими руками усилителей автомобильных аудиосистем, узнайте из этой статьи.

[ Скрыть ]

Типичные неисправности

Перед тем, как ремонтировать, устанавливать и настраивать УНЧ в свой автомобиль, необходимо разобраться в поломке. Рассмотреть все неисправности, которые можно встретить на практике, просто невозможно, поскольку их очень много. Основной задачей ремонта устройства для усиления звука считается восстановление сломавшегося компонента, поломка которого привела к неработоспособности всей платы.

В любой электротехнике, в том числе усилителях, может быть два типа неисправностей:

  • контакт присутствует там, где он не должен находиться;
  • в том месте, где должен быть контакт, он отсутствует.

Проверка на работоспособность

Ремонт автомобильных усилителей в первую очередь начинается с диагностики УНЧ:

  1. Сначала необходимо вскрыть корпус и внимательно осмотреть схему, при необходимости используйте лупу. В ходе диагностики можно заметить разрушенные компоненты схемы: резисторы, конденсаторы, оборванные проводники либо выгоревшие дорожки платы. Но если вы нашли выгоревший компонент, нужно учесть, что его выход из строя может быть следствием перегорания другого элемента, который с виду может показаться целым.
  2. Далее, произведите диагностику блока питания, в частности, проверьте напряжение на выходе. При выявлении выгоревших резисторов эти элементы надо будет менять.
  3. Подайте питание на УНЧ и выход Remout, затем надо замкнуть систему на плюс и посмотреть на диодный индикатор PROTECTION. Если лампочка загорелась, это свидетельствует о том, что устройство ушло в защиту. Причина может заключаться в плохом питании или его отсутствии на плате, поломке транзистора либо проблемах в работе преобразователя напряжения. В некоторых случаях причина кроется в поломке транзисторного усилка мощности для одного из нескольких каналов.
  4. Если после того, как было подано питание, предохранительный элемент не сгорел, нужно проверить уровень напряжения на выходе. Оно должно составлять примерно 2х20 в и больше.
  5. Внимательно осмотрите трансформаторное устройство преобразователя напряжения, возможно, на нем имеются выгоревшие витки или обрывы цепи. Понюхайте этот элемент, может быть, он пахнет горелым. В некоторых моделях УНЧ между выходом ПН и усилком устанавливается диодная сборка — если она выходит из строя, узел также может включать защиту.

Устранение поломок

Ремонт автомобильного усилителя своими руками осуществляется в соответствии с тем, какая неполадка была выявлена при его работе:

  1. Если в автоусилителе сломался транзистор, то перед его непосредственной заменой рекомендуется продиагностировать предохранительный элемент по питанию.Также нужно убедиться в работоспособности диодов на шинах. Если с этими частями все в порядке, установленные транзисторы надо поменять.
  2. Чтобы осуществить более специализированный ремонт, вам потребуется осциллограф. Установив щупы устройства на выводах 9 и 10 платы генератора, необходимо убедиться в наличии сигналов. Если сигналы отсутствуют, то меняется драйвер, если они есть, то производится замена полевых транзисторных элементов.
  3. Значительно реже в процессе ремонта меняются конденсаторы — как показывает практика, такое случается нечасто (автор видео — канал HamRadio Tag).

Основные аспекты настройки усилителя

Теперь перейдем к вопросу — как настроить автомобильный усилитель? Есть несколько вариантов настройки — для использования с сабом и без него.

Как правильно настроить УНЧ без сабвуфера — сначала необходимо выставить такие параметры:

  • bass boost — 0 децибел;
  • уровень — 0 (8V);
  • кроссовер необходимо установить в положение FLAT.

После этого, регулируя настройки аудиосистемы эквалайзером, производится настройка системы под свои предпочтения. Громкость необходимо выставить на максимум и включить какой-нибудь трек. Как настроить для использования с сабвуфером — процедура также не особо сложная.

Для правильной настройки желательно использовать следующие параметры:

  • Bass Boost также следует выставить на уровень 0 децибел;
  • уровень устанавливается на отметку 0;
  • передний кроссовер устанавливается в положение НР, а регуляторный элемент FI PASS необходимо выставить в диапазон от 50 до 80 Герц;
  • что касается заднего кроссовера, то он устанавливается в положение LP, а регулятор Low необходимо установить в диапазоне от 60 до 100 Герц.

Эти параметры соблюдать очень важно, поскольку именно они определяют качество регулировки и, соответственно, звучания аудиосистемы. В целом процедура настройки производится аналогично, для этого используется регулятор уровня для обеспечения более гармоничного звучания. Чувствительность задних и передних динамиков следует подстроить друг под друга.

Если вы в этом ничего не понимаете, лучше туда не лезть, потому что ремонт обойдется дороже после того, что вы еще спалите или поломаете.

Извините, в настоящее время нет доступных опросов.

Перед регулировкой УНЧ следует прикоснуться пинцетом к незаземленному гнезду для подключения звукоснимателя или непосредственно к управляющей сетке первой лампы усилителя. Если усилитель работает, то в громкоговорителе появится сильное гудение. Регулятор громкости при этом должен находиться в положении, соответствующем максимальной громкости.

Необходимо также правильно соединить приборы. Прежде всего соединяют между собой все клеммы, подлежащие заземлению. Клеммы приборов, находящихся со стороны входа, соединяются с клеммой Земля входа усилителя, а соответствующие клеммы приборов выхода подключаются к клемме Земля выхода усилителя. Затем клеммы Земля входа и выхода усилителя соединяют перемычкой. Подключение звукового генератора ко входу усилителя производится экранированным проводом, экран надежно заземляется.

Затем приемник включают на воспроизведение грамзаписи, а регулятор громкости устанавливают в положение максимального усиления. Если в приемнике имеется регулятор тембра, то проверку производят при различных положениях этого регулятора. При любом положении регуляторов тембра и максимальной громкости усилитель не должен возбуждаться. Возбуждение обнаруживается при появлении в громкоговорителе прерывистого звука или свистов различного тона, а также по показаниям измерительной аппаратуры.

Кроме самовозбуждения, в усилителе может появиться фон переменного тока. Наличие фона проверяется также при отсутствии сигнала на входе усилителя.

Затем приступают к проверке работы усилителя при наличии сигнала на входе. В качестве примера рассмотрим порядок проверки УНЧ промышленного приемника Сириус-309.

Выходной шланг звукового генератора типа ГЗ-33 или аналогичный ему прибор присоединяют к колодке для подключения магнитофона. Измеритель выхода типа ВЗ-2А присоединяют параллельно вторичной обмотке выходного трансформатора. Радиолу включают на воспроизведение грамзаписи. Регулятор громкости и регулятор тембра должны находиться в положении максимального усиления и наибольшей ширины полосы пропускания. На генераторе устанавливают сигнал с частотой 1000 Гц и такой уровень выходного напряжения, при котором напряжение на измерителе выхода ВЗ-2А будет 0,8В, что соответствует номинальной выходной мощности. Величина выходного напряжения звукового генератора является чувствительностью УНЧ и должна быть для данной радиолы не хуже 80 мВ. Для приемников других марок при выходном напряжении звукового генератора 0,2...0,25В усилитель должен отдавать в нагрузку мощность, близкую к номинальной.

После этого проверяют частотную характеристику усилителя и действие регулятора тембра и громкости. На вход УНЧ подают от генератора сигнал, равный 0,25В с частотой 1000 Гц. Регулятор тембра устанавливают в положение, соответствующее завалу высших звуковых частот. Регулятором громкости на измерителе выхода устанавливают напряжение, равное 0,8 В. Затем, не меняя напряжения, на звуковом генераторе устанавливают частоту, равную 5000 Гц. При этом выходное напряжение на измерителе выхода должно уменьшиться до 0,4 В.

Чтобы проверить действие регулятора громкости, необходимо на вход радиолы подать от генератора типа Г4-102 напряжение, модулированное по амплитуде напряжением 1000 Гц с глубиной модуляции 30 %, при котором измеритель выхода покажет напряжение 2,5 В. Регулятор громкости при этом должен находиться в положении максимальной громкости. Затем регулятор громкости устанавливают в положение минимальной громкости и замечают показание измерителя выхода. Отношение напряжения (на выходе приемника), соответствующего номинальной выходной мощности, к напряжению, соответствующему положению минимальной громкости регулятора громкости (в децибелах), должно быть не менее 40 дБ.

Проверяя частотную характеристику и действия регуляторов тембра и громкости, необходимо следить за тем, чтобы напряжение на выходе звукового генератора соответствовало 250 мВ. Пределы измерений выходного напряжения при проверке частотной характеристики и регулировки тембра и громкости в приемниках других марок должны быть указаны в инструкции по ремонту в виде таблицы.

Выше была рассмотрена методика проверки УНЧ с однртактным выходным каскадом, В высококачественных УНЧ приемников первого и высшего классов и транзисторных приемников оконечные каскады собираются по двухтактным схемам.

Настройку двухтактных выходных каскадов начинают с фазоинверсного каскада. При регулировке этого каскада устанавливают одинаковые величины выходного напряжения, сдвинутые по фазе на 180°. Для этого подбирают величины сопротивлений резисторов в цепях коллектора и эмиттера. Транзисторы, применяемые в двухтактной схеме усилителя мощности, должны иметь одинаковые параметры. Хорошо, если у транзисторов токи коллекторов и коэффициент усиления по току отличаются не более чем на ±10 %. Если транзисторы не идентичны по параметрам, то приходится регулировать напряжение смещения с помощью резисторов, включенных в базовых цепях. Условием нормальной работы двухтактного оконечного каскада является симметрия его плеч как по постоянному току, так и по переменному.

Если нужно проверить полярность подключения цепи обратной связи, на вход УНЧ от звукового генератора подают сигнал частотой 1000 Гц такой величины, при которой выходное напряжение было бы примерно вдвое меньше номинального. Затем замыкают накоротко резистор, с которого снимается напряжение обратной связи, и наблюдают за показаниями измерителя выходного напряжения. Если при этом показания измерителя выхода увеличиваются, то значит полярность обратной связи отрицательная (правильная), а если уменьшаются - положительная. Для изменения полярности необходимо поменять местами концы вторичной обмотки выходного трансформатора.

Заключительный этап регулировки усилителя - проверка всех его качественных показателей: а) измерение выходной мощности; б) снятие частотной характеристики; в) измерение коэффициента гармонических искажений; г) проверка уровня фона.

Тока покоя каскада меняйте, в зависимости от вида каскада, либо ток базы транзистора, либо напряжение смещения на сетке лампы.

Для создания тока базы транзистора, включенного по схеме с общим эмиттером, используйте резистор, соединяющий базу либо с питающей шиной, либо с коллектором. Второе предпочтительнее с точки термостабилизации. Чем меньше сопротивление резистора, тем больше приоткрывающий ток базы, а , и ток покоя каскада. Существуют и другие, более совершенные схемы термостабилизации биполярных , предполагающие использование нескольких резисторов.

Для создания напряжения смещения лампы подключите ее управляющую сетку проводу через высокоомный резистор (его номинал менять не потребуется), а между катодом и общим проводом включите резистор, с помощью которого будет регулироваться напряжение смещения. Зашунтируйте его конденсатором (если он электролитический, включите его плюсом к катоду). Чем больше сопротивление катодного резистора, тем больше и запирающее напряжение на сетке, являющееся отрицательным относительно катода (но не общего провода), и, соответственно, меньше ток покоя каскада.

Если каскад используется для усиления по переменному току, подавайте на него входной сигнал через конденсатор с очень малой утечкой, чтобы не нарушить его режим по постоянному току. Выходной сигнал снимайте с нагрузки также через конденсатор.

Независимо от того, является ли каскад ламповым или транзисторным, вначале возьмите резистор, задающий ток покоя, большого сопротивления, чтобы этот ток был малым. Подайте на вход каскада через конденсатор такой сигнал, чтобы его искажения можно было легко обнаружить на слух или на экране осциллографа. Выходной сигнал снимите также через конденсатор, и подайте его, соответственно, на контрольный усилитель или осциллограф. Транзистор заранее установите на теплоотвод.

Последовательно с нагрузочным резистором включите миллиамперметр. Лишь после этого подайте на каскад питание. Ток покоя будет малым, а искажения - большими.

Всякий раз предварительно отключая питание каскада, ставьте в него резистор все меньшего и меньшего сопротивления. Ток покоя будет увеличиваться искажения - уменьшаться. Когда они перестанут падать, прекратите снижать сопротивление. Не пытайтесь узнать на практике, что будет при дальнейшем его уменьшении - поверьте наслово: усиление начнет падать, ток покоя возрастет до недопустимо большого значения, активный элемент может выйти из строя.

Если вас устраивает повышенное энергопотребление каскада, оставьте ток покоя на посинельном уровне, а если вы хотите ради экономичности пожертвовать качеством усиления, уменьшите ток покоя до желаемого уровня.

Правильно собранный УНЧ при соответствии режимов транзисторов диаграммам (см. рис. 63 - 68) и табл. 3 должен сразу нормально работать при подаче на вход сигнала от звукового генератора (ЗГ). Поэтому процесс настройки и регулировки усилителя НЧ сводится к проверке чувствительности, величины нелинейных искажений и частотной характеристики, а также к устранению выявленных при этом неисправностей, из-за которых тот или иной параметр не будет соответствовать норме.

Перед началом измерений целесообразно проверить ток потребления усилителем НЧ при отсутствии сигнала. Для этого вынимаются (выпаиваются) все транзисторы до блока УНЧ и замеряется ток. Например, для радиоприемников типа «Спидола» этот ток составляет 6 - 8 ма. Если же измеренный ток превышает эту величину, необходимо заменить транзистор первого каскада УНЧ на триод с большим коэффициентом усиления.

Далее к входу усилителя НЧ подключается ЗГ. Для приемников типа «Спидола» генератор подсоединяется к контакту 10 платы ПЧ-НЧ (см. рис. 2) или лепестку 1 потенциометра R30 (см. рис. 21), а земляной вывод ЗГ соединяется с контактом 7 платы ПЧ-НЧ или лепестком 3 потенциометра R30. Для остальных приемников звуковой генератор подключается к соответствующим выводам разъема «магнитофон» (Ш).

На выход приемника (рис. 69) параллельно звуковой катушке громкоговорителя подсоединяется ламповый вольтметр (ЛВ), осциллограф и измеритель нелинейных искажений (ИНИ). Для всех приемников эти приборы подключаются к гнездам внешнего громкоговорителя на колодке внешних соединений или к соответствующим контактам разъема «магнитофон» (Ш).

Ниже рассматривается порядок настройки и проверки УНЧ приемников типа «Спидола», «ВЭФ-12», «ВЭФ-201», и «ВЭФ-202». Данные по настройке и проверке УНЧ радиоприемников типа «Океан» сведены в табл. 4; «Спидола-207» и «Спидола-230» - в табл. 5. Настройка приемника «Меридиан-202», имеющего значительные отличия в электрической схеме, описывается в § 18.

Для проверки чувствительности УНЧ радиоприемников типа «Спидола», «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» на звуковом генераторе устанавливается частота 1000 гц и выходное напряжение не более 15 же. Регулятор громкости (РГ) ставится в положение максимальной громкости, а регулятор тембра («ВЭФ-12»,« ВЭФ-201» в «ВЭФ-202») - в положение широкой полосы (подъем высоких частот). При этом в громкоговорителе будет прослушиваться звук частотой 1000 гц, а выходной вольтметр покажет величину напряжения этой частоты. Регулятором выхода ЗГ устанавливается такое напряжение, при котором на выходе будет 0,56 в (1,1 в для «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202»). Это напряжение соответствует номинальной выходной мощности. Напряжение на выходе ЗГ и будет чувствительностью тракта НЧ.

Рис. 69. Структурная схема настройки и проверки УНЧ приемников 1,2 - вход блока УНЧ; 3,4 - гнездо внешнего громкоговорителя или разъема «магнитофон» (III)

Параллельно с проверкой чувствительности производится проверка нелинейных искажений тракта усиления НЧ по показанию ИНИ. Коэффициент нелинейных искажений не должен превышать величин, указанных в табл. 2, а изображение синусоиды на экране осциллографа должно быть без искажений. В случае сильных искажений необходимо заменить транзисторы Т9 и Т10. Причинами завышенных нелинейных искажений может быть также неправильная распайка выводов согласующего и выходного трансформаторов (сигнал с выхода УНЧ совпадает по фазе с сигналом на входе). В этом случае необходимо перебросить концы вторичной обмотки трансформаторов. Кроме того, причина может быть в неправильно подобранной емкости конденсатора С80 и С81 («Спидола»), С77 и С76 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и сопротивления резистора R36 («Спидола»), R42 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Таблица 4

Таблица 4

Таблица 5

Для проверки частотной характеристики УНЧ на звуковом генераторе устанавливается частота 1000 гц. Регулятором громкости на выходе УНЧ устанавливается напряжение 0,56 в («Спидола»), 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и в дальнейшем положение РГ не меняется. Напряжение на входе (мх) не должно превышать 12 мв («Спидола»), 10 мв («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). Затем на вход УНЧ подается сигнал частотой сначала 200 гц, а потом 4000 гц (полоса воспроизведения), и в обоих случаях регулятором выхода ЗГ устанавливается напряжение u2t которое соответствует напряжению на выходе 0,56 в (1,1 в). Неравномерность частотной характеристики N определяется из соотношения N = 20 lg (и2/u1) и не должна превышать норм, указанных в табл. 2. Коррекция частотной характеристики может быть осуществлена подбором емкости конденсатора С78 («Спидола»), С73 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Рис. 70. Структурная схема измерения входного сопротивления УНЧ приемников 1,2 - вход УНЧ; Нвх - сопротивление между точками 1 и 2

Иногда полезно знать величину входного сопротивления усилителя НЧ. Для этого собирается схема в соответствии с рис. 70.

Регулятор громкости устанавливается в положение максимальной громкости. От ЗГ на базу первого транзистора усилителя НЧ подается сигнал частотой 1000 гц через резистор R1 (2 - 3 ком) такой величины, чтобы напряжение на выходе было 0,56 в («Спидола») и 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). В этом случае ламповый вольтметр (ЛВ1) на выходе ЗГ покажет величину напряжения ut, a ЛB2 - и2 (вход УНЧ). Зная величину R1 и напряжения и2 и и1, можно подсчитать входное сопротивление усилителя (RBX) по формуле:

Rвх = u2 R1/uR1 = u2/(u1-u2) R1,

где uR1 == u1 - u2.

Величина резистора R1 подбирается так, чтобы щ та 2и2.

Если на выходе УНЧ напряжение, соответствующее номинальной выходной мощности, может быть получено при очень малых напряжениях на входе, то это будет говорить о близости усилителя к самовозбуждению. Причинами этого явления могут быть положительная обратная связь вместо отрицательной, обрыв в цепи обратной связи или неправильная распайка выводов согласующего (выходного) трансформатора. Этот режим характеризуется очень высоким коэффициентом нелинейных искажений и большой неравномерностью частотной характеристики.

После окончания регулировки УНЧ необходимо включить напряжение питания и проверить на слух работу усилителя НЧ при всех положениях регулятора громкости. При положении РГ, соответствующему минимальной громкости, на выходе приемника не должно быть никакого сигнала, а при максимальной громкости и подаче на вход УНЧ сигнала от ЗГ частотой 1000 гц и величиной 15 - 25 мв форма выходного напряжения должна быть неискаженной и без изломов, ярко светящихся точек и т. д.

Рис. 2. Электромонтажная схема платы ПЧ-НЧ радиоприемников «Спидола», «ВЭФ-Спидола» и «ВЭФ-Спидола-10» Резистор R42 установлен со стороны фольги

Рис. 6. Электромонтажная схема платы ПЧ-НЧ радиоприемников «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» Резисторы R10, R22 и R47 установлены со стороны фольги

Рис. 10. Электромонтажные схемы планок диапазонов 25 м - П1 31 м - П2, 41 м - ПЗ, 49 м - П4 (а),- 50 - 75 ж - П5 (б); СВ - П6(в) и ДВ - П7(г) радиоприемника «Океан» На планках диапазонов 25 м (П1) и 31 м (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой
Рис. 11. Электромонтажная схема платы блока УКВ радиоприемника «Океан»

Рис. 12. Электромонтажная схема платы ВЧ-ПЧ радиоприемника «Океан» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1. Точки 20 и 21 платы соединены перемычкой
Рис. 13. Электромонтажная схема платы УНЧ радиоприемника «Океан»

Рис. 15. Электромонтажные схемы планок диапазонов 2о м - П1, 31 м - П2, Им - ПЗ, 49 м - - П4(а); 50 - 75 м - 115(6) радиоприемника «Океан-203» На планках диапазонов 25 м (III) и 31 л (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой

Рис. 16. Электромонтажная схема платы блока УКВ радиоприемника «Океан-203»
Рис. 17. Электромонтажная схема платы ВЧ-Г1Ч радиоприемника «Океан-203» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1
Рис. 18. Электромонтажная схема платы УНЧ радиоприемника «Океан-203»

Рис. 20. Электромонтажная схема - платы блока УКВ радиоприемника «Океан-205»
Рис. 21. Электромонтажная схема платы УНЧ радиоприемника «Океан-205»
Рис. 22. Электромонтажная схема платы выпрямителя радиоприемника «Океан-205»

Рис. 23. Электромонтажная схема платы переключателей В2 - В5 радиоприемника «Океан-205»
Рис. 24. Электромонтажные схемы планок диапазонов 25 м - П1, 31 ж-П2, 41 м - ПЗ, 49 м - П4(а); 50-75 м - П5(6j; CB - П6(в); ДВ - П7(г) радиоприемника «Океан-205» На планках диапазонов 41 м (ЛЗ) и 49 Л1 (U4) вместо перемычки между точками А и В установлен дроссель (Др)

Рис. 25. Участок электромонтажной схемы платы ВЧ-ПЧ радиоприемника «Океан-205» с измененной печатью
Рис. 27. Электромонтажные схемы планок диапазонов 25 ж - П1, 31 М - .П2, 41 м - ПЗ, 49 м~П4(а); 52-75 м - 115(6); СВ - П6(в); ДВ - П7(г) радиоприемников «Спидола-207» и «Спидола-230»

Рис. 28. Электромонтажная схема платы ПЧ-НЧ радиоприемника «Спидола-207» Экраны транзисторов ТЗ - Т7 показаны условно. Положения подвижных ножей переключателей В1 - В5 не показаны

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png