Известный даже неспециалистам выпрямительный диод – это особый вид приборов на основе полупроводников, используемый с целью получения постоянных напряжений из исходных потенциалов с переменными параметрами. Изделия этого класса относятся к двухэлектродным устройствам с односторонней проводимостью, благодаря которой обеспечивается их выпрямительный эффект (смотрите фото ниже).

Построенные на основе этих элементов диодные выпрямители широко применяются как в электротехнике, так и в современных электронных изделиях. Чаще всего выпрямительные диоды используются в качестве простых одиночных вентилей или в составе более сложных мостовых схем.

Принцип выпрямления

У любого выпрямительного прибора имеется два вывода или электрода, называемых анодом и катодом. Каждый из них соединен с образующими полупроводниковый переход пластинами соответствующей проводимости (анод – с «p», а катод – с «n» слоем). В моменты, когда на анод диода поступает плюс, а на его катод – минус (в случае так называемого «прямого» включения) прибор пропускает ток, находясь в открытом состоянии.

Если же полярность поступающего напряжения меняет свой знак (обратное включение диода), согласно его вольтамперной характеристике, ток через полупроводниковый переход не протекает. В результате односторонней проводимости прибора на его выходе образуется пульсирующий токовый сигнал (он приведен на фото ниже).

Согласно этой схеме после диода VD выпрямленный сигнал Un поступает в нагрузку R (пока без фильтрации), где используется по назначению.

Обратите внимание! Если на вход выпрямительного устройства подать переменное напряжение определенной амплитуды U, ток через него и нагрузку R потечет только в одном направлении.

В результате выпрямления на нагрузке появится серия из положительных полуволн, которые в дальнейшем поступают на электролитические конденсаторы с целью фильтрации. Только после сглаживания пульсаций посредством емкостей можно будет говорить об окончательно выпрямленном напряжении.

Вольтамперная характеристика (ВАХ)

Вольтамперная характеристика рассматриваемого здесь прибора представлена на размещенном ниже рисунке.

Из нее видно, что в первом квадранте осей координат (справа сверху) располагается прямая ветвь зависимости тока Iпр от подаваемого на выпрямитель напряжения Uпр. Своей формой она указывает на низкое сопротивление диода при положительной полярности приложенного к его полюсам потенциала (линейная часть с наклоном, близким к 45 градусам).

В третьем квадранте (слева внизу) располагается обратная ее ветвь, своим горизонтальным положением указывающая на высокое сопротивление p-n перехода.

В этом квадранте напряжение Uобр на полюсах диода имеет отрицательную полярность, вследствие чего ток Iобр через смещенный в обратном направлении переход близок к нулю.

Теория управления p-n переходом

Заложенный в основу любого диодного элемента электронный p-n переход представляет собой двойной слой из насыщенных и обедненных электронами (дырками) областей, которые располагаются одна от другой на удалении порядка размера атома.

Если подать на такой диод напряжение прямой полярности (плюс – на анод, а минус – на катод), электроны из насыщенного ими слоя начинают усиленно диффундировать в область, где их меньше, разгоняясь приложенным положительным потенциалом. В результате этого проводимость слоя резко увеличивается (его сопротивление падает), и ток начинает протекать в прямом направлении. То же самое происходит и с дырками.

В случае, когда к этому же элементу прикладывается напряжение противоположной полярности (потенциалы на аноде и катоде меняются своими знаками), дырки и электроны начинают удаляться от перехода. При этом на его границе образуется потенциальный барьер, не позволяющий носителям зарядов проникать из одной области в другую (смотрите фото ниже).

Вследствие этого эффекта переход находится в состоянии пониженной проводимости (высокого сопротивления), при котором диод не проводит ток. С энергетической точки зрения, оба рассмотренных выше случая сводятся к преодолению электронного барьера, искусственно создаваемого на стыке полупроводников двух проводимостей.

Дополнительная информация. В качестве полупроводников используются известные элементы таблицы Менделеева с явно выраженным полуметаллическим эффектом (индий, германий, кремний и другие).

Из этих материалов и формируются описанные выше p-n переходы, которые при изготовлении размещаются в корпусе готового к применению изделия – диода.

Классификация и характеристики диодов

Все известные типы выпрямительных диодов принято различать по следующим признакам:

  • Величина коммутируемой мощности;
  • Частота переключений;
  • Вид используемого при изготовлении p-n перехода полупроводника.

По первому из этих признаков диоды делятся на маломощные приборы, а также на изделия средней и большой мощности. Указанное деление определяется силой тока, которую способен пропускать через себя p-n переход вентильного элемента при фиксированном напряжении на его электродах. В соответствии с этим признаком, рассматриваемые здесь электронные устройства могут быть разбиты на следующие три группы:

  • Диоды низкой мощности с минимальной величиной выпрямленного (или прямого) тока – до 0,3 Ампер;
  • Приборы средней мощности (от 0,3 до 10 Ампер);
  • Мощные или силовые выпрямительные изделия, значения прямых токов в которых достигает величин порядка десятки и сотни ампер.

По своим частотным параметрам все известные типы диодов делятся на приборы низкой, средней, высокой и сверхвысокой (СВЧ) частоты.

Обратите внимание! Большинство выпрямительных диодов, используемых в качестве вентилей в промышленных и бытовых электрических сетях 50 Герц, относятся к разряду низкочастотных.

По типу используемого при изготовлении диода перехода их принято делить на уже устаревшие германиевые изделия и современные кремниевые выпрямители. В соответствии с рассмотренной классификацией диодных компонентов, вводятся их характеристики, которые представлены следующими рабочими параметрами:

  • Максимальное выпрямляемое (обратное) напряжение;
  • Прямое напряжение на открытом диодном элементе (его падение на смещенном переходе);
  • Допустимое значение пропускаемого через диод прямого тока;
  • Величина допустимого обратного тока;
  • Предельно рассеиваемая на вентиле мощность;
  • Рабочая и максимальная температуры перехода;
  • Допустимая частота коммутируемого сигнала.

Помимо указанных характеристик, которые считаются основными показателями функционирования диодных элементов, существуют и второстепенные, напрямую связанные с уже рассмотренными ранее параметрами. К ним обычно относят такие характеристики, как быстродействие и емкость p-n перехода, а также его дифференциальное и тепловое сопротивления.

Дополнительная информация. Эти параметры востребованы при проектировании сложных электронных схем, а на работу прибора в выпрямительном режиме, как правило, существенного влияния не оказывают.

Добавим к этому, что температурные режимы работы диодного элемента принято относить к его основным параметрам. Для самого распространенного типа этих изделий (кремниевого диода) этот показатель колеблется обычно в диапазоне от -50 до +130 градусов. При конструировании электронной аппаратуры большое внимание уделяется температуре корпуса самого прибора, величина которой зависит от его параметров (типа, мощности и производителя).

Области применения

Выпрямительные элементы вентильного типа в сфере электротехнических и электронных преобразований применяются, как правило, для следующих целей:

  • Коммутация (размыкание и замыкание рабочих цепей);
  • Детектирование и ограничение сигналов различной формы и длительности;
  • Непосредственное выпрямление переменных напряжений, обеспечивающее получение стабильных уровней потенциалов.

Помимо этого, классический выпрямительный диод, изготовленный на основе кремниевых материалов, является основой для создания так называемых «мостовых» схем, включающих в свой состав сразу несколько элементов (фото ниже).

С появлением вентильных сборок из четырех диодов, включенных по встречно-параллельному принципу, существенно упростились сами выпрямительные модули с одновременным облегчением технологии их монтажа.

Благодаря таким замечательным характеристикам, как дешевизна, простота конструкции и надежность в эксплуатации выпрямительные диоды на основе полупроводниковых переходов широко применяются не только в электронных и электротехнических устройствах, но и в такой далекой от них области, как радиотехника.

Дополнительная информация. В радиотехнических устройствах эти элементы используются в высокочастотных режимах, обеспечивая выпрямление, коммутацию и ограничение принимаемых эфирных сигналов.

В заключительной части обзора отметим, что современные выпрямительные диоды представлены большим ассортиментом различных типов и моделей, отличающихся как своим конструктивным исполнением, так и заявленными рабочими характеристиками. Умение правильно обращаться с этими электронными элементами сводится к знанию алгоритма выбора того или иного образца диода, ориентируясь на приведенные в справочных пособиях данные.

Видео

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:


Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.


Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением U IN (график 2) и идет через VD на нагрузку R.


Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой I обр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).


Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.


Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.


Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Полупроводниковый диод это полупроводниковый прибор с одним p-n переходом и с двумя электродами. Принцип действия полупроводникового диода основан на явлении p-n перехода, поэтому для дальнейшего изучения любых полупроводниковых приборов нужно знать как работает .

Выпрямительный диод (также называют вентилем) — это разновидность полупроводникового диода который служит для преобразования переменного тока в постоянный.

У диода есть два вывода (электрода) анод и катод. Анод присоединён к p слою, катод к n слою. Когда на анод подаётся плюс, а на анод минус (прямое включение диода) диод пропускает ток. Если на анод подать минус, а на катод плюс (обратное включение диода) тока через диода не будет это видно из вольт амперной характеристики диода. Поэтому когда на вход выпрямительного диода поступает переменное напряжение через него проходит только одна полуволна.

Вольт-амперная характеристика (ВАХ) диода.

Вольт-амперная характеристика диода показана на рис. I. 2. В первом квадранте показана прямая ветвь характеристики, описывающая состояние высокой проводимости диода при приложенном к нему прямом напряжении, которая линеаризуется кусочно-линей­ной функцией

u = U 0 +R Д i

где: u — напряжение на вентиле при прохождении тока i; U 0 — пороговое напряжение; R д — динамическое сопротивление.

В третьем квадранте находится обратная ветвь вольт-амперной характеристики, описывающая состояние низкой проводимости при проложенном к диоду обратном напряжении. В состоянии низкой проводимости ток через полупроводниковую структуру практически не протекает. Однако это справедливо только до определённого значения обратного напряжения. При обратном напряжении, когда напряженность электрического поля в p-n переходе достигает порядка 10 s В/см, это поле может сообщить подвижным носителям заряда - электронам и дыркам, постоянно возникающим во всем объеме полупроводниковой структуры в результате термической генерации,- кинетическую энергию, достаточную для ионизации нейтральных атомов кремния. Образовавшиеся дырки и электроны проводимости, в свою очередь, ускоряются электрическим полем p-n перехода и также ионизируют нейтральные атомы кремния. При этом происходит лавинообразное нарастание обратного тока, .т. е. лавинный пробои.

Напряжение, при котором происходит резкое повышение обратного тока, называется напряжением пробоя U 3 .

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр . Этот ток называется прямым Iпр . Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт - для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой - диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв - здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр , которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн . Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн - все просто - это закон Ома .

Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода .

Это самое основное, про что надо помнить.

Теперь - несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А , причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы "или".
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр , то при Uвнеш питание осуществляется от внутреннего источника, иначе - подключается внешний.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Полупроводниковые диоды и их характеристики

Диодом называют полупроводниковый прибор, который состоит из одного - перехода и имеет два вывода: анод и катод. Полупроводниковые диоды весьма многочисленны, и одним из основных классификационных признаков служит их назначение, которое связано с использованием определенного явления в- переходе.

Диоды, предназначенные для преобразования переменного тока в постоянный, называют выпрямительными. Д ля них основным является вентильный эффект (большая величина отношения прямого тока к обратному), но не предъявляется жестких требований к временным и частотным характеристикам. Они рассчитываются на значительные токи и имеют большую площадь- перехода. В реальных диодах, как правило, используются несимметричные - переходы. В таких переходах одна из областей кристалла (область с большей концентрацией основных носителей), обычно , бывает достаточно низкоомной, а другая - высокоомной. Низкоомная область является доминирующим источником подвижных носителей зарядов, и ток через диод при прямом включении перехода практически полностью определяется потоком ее основных носителей. Поэтому низкоомную область полупроводникового кристалла диода называют эмиттером. Различие в концентрации основных носителей зарядов сказывается и на расположении - перехода на границе областей с различным типом электропроводности. В связи с большей концентрацией носителей в низкоомной области (как отмечено выше) ширина - перехода в ней оказывается меньше, чем в высокоомной. Если различие в концентрации основных носителей велико, то - переход почти целиком расположится в высокоомной области, которая получила название базы.

Вольт-амперные характеристики реальных диодов и - переходов близки друг к другу, но не одинаковы (рисунок 1.6). Отличия наблюдаются как на прямой, так и на обратной ветви. Это объясняется тем, что при анализе процессов в - переходе не учитывают ни размеры кристалла и перехода, ни сопротивления полупроводниковых слоев, прилегающих к переходу. Наличие в полупроводниковом кристалле высокоомной области базы, которая характеризуется сопротивлением , приводит к дополнительному падению напряжения , в результате прямая ветвь диода проходит положе, чем впереходе. Обратная ветвь ВАХ диода проходит ниже, чем у идеальногоперехода, т.к. к току насыщения добавляется ток утечки по поверхности кристалла .

Рисунок 1.6 - Условное обозначение диода (а);

вольт-амперные характеристики (в):

1 - идеального- перехода, 2 – реального диода

Диоды могут производиться на основе германия или кремния; их ВАХ имеют существенные различия (рисунок 1.7)


Рисунок 1.7 - Вольт-амперные характеристики германиевого (1),

кремниевого (2) диодов

Сдвиг прямой ветви характеристики влево обусловлен различием в величине потенциального барьера , а положение обратной ветви определяется различием концентраций неосновных носителей, которые зависят от ширины запрещенной зоны полупроводника.

Вид вольт-амперной характеристики зависит от температуры полупроводникового кристалла (рисунок 1.8).

Рисунок 1.8 - Зависимость вида ВАХ диода от температуры

С ростом температуры уменьшается прямое падение напряжения на диоде при постоянном значении прямого тока . Прямое напряжение изменяется на 2.1 мВ при изменении температуры на 1ºС.

Обратный ток увеличивается с ростом температуры в два раза при изменении температуры на 10ºС для германиевых и в три раза для кремневых диодов, однако, следует учитывать, что обратный ток кремневых диодов на три порядка меньше, чем германиевых.

В настоящее время наибольшее распространение получили кремниевые выпрямительные диоды, которые имеют следующие преимущества:

Во много раз меньшие (по сравнению с германиевыми) обратные токи при одинаковом напряжении; высокое значение допустимого обратного напряжения, которое достигает 1000...1500 В, в то время как у германиевых диодов оно находится в пределах 100...400 Вт;

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +150 °С, германиевых - лишь от -60 до +85 °С (при температуре выше 85 °С в германии резко возрастает термогенерация, что увеличивает обратный ток, и может привести к потере диодом вентильных свойств).

Однако в выпрямительных устройствах низких напряжений и больших токов выгоднее применять германиевые диоды, так как их сопротивление в прямом направлении в 1,5...2 раза меньше, чем у кремниевых при одинаковом токе нагрузки, что уменьшает мощность, рассеиваемую внутри диода.

Основные параметры выпрямительных диодов:

максимально допустимое обратное напряжение диода - значение напряжения, приложенного в обратном направлении, которое диод может выдержать в течение длительного времени без нарушения его работоспособности;

средний выпрямленный ток диода - среднее за период значение выпрямленного тока, протекающего через диод;

импульсный прямой ток диода - пиковое значение импульса тока при заданных максимальной длительности, скважности и форме импульса;

средний обратный ток диода - среднее за период значение обратного тока;

среднее прямое напряжение диода при заданном среднем значении прямого тока ;

средняя рассеиваемая мощность диода - средняя за период мощность, рассеиваемая диодом при протекании тока в прямом и обратном направлениях;

дифференциальное сопротивление диода - отношение приращения прямого напряжения на диоде к вызвавшему его малому приращению тока.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png