Введение 3

1. Возникновение и развитие нанонауки 4

2. Природные нанообъекты и наноэффекты 6

3. Фундаментальные положения 9

3.1 Сканирующая зондовая микроскопия -

3.2 Сканирующая туннельная микроскопия -

4. Наноматериалы 11

4.1 Фуллерены -

4.2 Фуллериты -

4.3 Углеродные нанотрубки -

4.4 Сверхпрочные материалы 12

4.5 Высокопроводящие материалы -

4.6 Нанокластеры -

4.7 Графен 13

5. Прикладная нанотехнология 14

5.1 Инкрементная нанотехнология -

5.2 Эволюционная нанотехнология 17

5.3 Радикальная нанотехнология -

6. Перспективы развития нанонауки 18

7. Критика нанотехнологий 19

Заключение 20

Список литературы 21

Введение

Согласно Энциклопедическому словарю, технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.

Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений.

Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью.

Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.

Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.

1. Возникновение и развитие нанонауки

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Room at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Вот как Р. Фейнман описал предполагаемый им манипулятор:

«Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой - от хирургических операций до транспортирования и переработки радиоактивных материалов. Я надеюсь, что принцип предлагаемой программы, а также связанные с ней неожиданные проблемы и блестящие возможности понятны. Более того, можно задуматься о возможности дальнейшего существенного уменьшения масштабов, что, естественно, потребует дальнейших конструкционных изменений и модификаций (кстати, на определенном этапе, возможно, придется отказаться от «рук» привычной формы), но позволит изготовить новые, значительно более совершенные устройства описанного типа. Ничто не мешает продолжить этот процесс и создать сколько угодно крошечных станков, поскольку не имеется ограничений, связанных с размещением станков или их материалоемкостью. Их объем будет всегда намного меньше объема прототипа. Легко рассчитать, что общий объем 1 млн уменьшенных в 4000 раз станков (а следовательно, и масса используемых для изготовления материалов) будет составлять менее 2 % от объема и массы обычного станка нормальных размеров. Понятно, что это сразу снимает и проблему стоимости материалов. В принципе, можно было бы организовать миллионы одинаковых миниатюрных заводиков, на которых крошечные станки непрерывно сверлили бы отверстия, штамповали детали и т. п. По мере уменьшения размеров мы будем постоянно сталкиваться с очень необычными физическими явлениями. Все, с чем приходится встречаться в жизни, зависит от масштабных факторов. Кроме того, существует еще и проблема «слипания» материалов под действием сил межмолекулярного взаимодействия (так называемые силы Ван-дер-Ваальса), которая может приводить к эффектам, необычным для макроскопических масштабов. Например, гайка не будет отделяться от болта после откручивания, а в некоторых случаях будет плотно «приклеиваться» к поверхности и т. д. Существует несколько физических проблем такого типа, о которых следует помнить при проектировании и создании микроскопических механизмов».

В ходе теоретического исследования данной возможности, появились гипотетические сценарии конца света, которые предполагают, что нанороботы поглотят всю биомассу Земли, выполняя свою программу саморазмножения (так называемая «серая слизь» или «серая жижа»).

Первые предположения о возможности исследования объектов на атомном уровне можно встретить в книге «Opticks» Исаака Ньютона, вышедшей в 1704 году. В книге Ньютон выражает надежду, что микроскопы будущего когда-нибудь смогут исследовать «тайны корпускул».

Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах: «Машины создания: грядёт эра нанотехнологии». Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

2. Природные нанообъекты и наноэффекты

Как великий художник природа умеет

и с небольшими средствами

достигать великих эффектов.
(Г.Гейне, немецкий поэт, публицист, критик)

Окружающий нас мир наполнен разнообразными биологическими нанообъектами и наноэффектами, о нанометрической сущности которых мы порой даже и не задумываемся. Например, если размеры бактерий исчисляются микрометрами, то большинство вирусов имеют размеры от 10 до 200 нм. Так, вирус гриппа H3 N2, вызвавший в 1957 году эпидемию, в результате которой умерли от 1 до 4 млн человек, представляет собой сферу диаметром от 80 до 120 нм.

Вирусы - это уникальное природное произведение нанобиотехнологий. Сердцевина вируса содержит одну отрицательную цепь рибонуклеопротеинов (РНП), состоящую из восьми частей, которые кодируют десять вирусных белков. Фрагменты РНП имеют общую белковую оболочку, объединяющую их и образующую нуклеопротеид. На поверхности вируса находятся выступы (гликопротеины) - гемагглютинин (названный так из-за способности агглютинировать эритроциты) и нейраминидаза (фермент). Гемагглютинин обеспечивает способность вируса присоединяться к клетке.

Размеры аминокислот составляют около 1 нм, а сами белки занимают размерную нишу в диапазоне 4-50 нм.

Объект

Вещество

Размер, нм

Аминокислота

Глицин (наименьшая из аминокислот)

Триптофан (наибольшая из аминокислот)

Нуклеотид

Цитозин (наименьшая из аминокислот, входящих в ДНК)

Гуанин фосфат (наибольшая из аминокислот, входящих в ДНК)

Аденозин трифосфат (АТФ, энергетический источник клетки)

Молекула

Хлорофилл растений

Инсулин человека (полипептидный гормон)

Эластин (строительный материал клеток)

Гемоглобин (переносчик кислорода)

7,0мира и РБ………………………………21-30 4. Практическое применение нанотехнологий ………………………………………...31-55 4.1 Нанотехнологии ... направлений развития современного материаловедения являются наноматериалы и нанотехнологии . К нанотехнологиям можно...

  • Современные тенденции и новые направления в науке о полимерах

    Реферат >> Химия

    Без использования нанотехнологий . Наночастицы, использованные в составе световоспринимающей пленки, помогли создать современный прототип... , в современном мире все больший вес набирают именно инновационные науки, в частности нанотехнологии . Во всем мире ...

  • Современная инновационная политика России

    Реферат >> Политология

    Данной работе рассматривается тема "Современная инновационная политика России". Государственное... области электроники и космоса. Однако в современном мире скорость, с которой этот запас тает... уровня мировых лидеров. На нанотехнологии (а это один из...

  • Современные экономические отношения РФ со странами Европы

    Реферат >> Экономика

    Отношений и Европы 3.2. Особенности современных международных экономических отношений в... валютно-финансовые отношения. В современном мире особенно актуальным является глобализация и... -производственного центра на базе нанотехнологий . В свою очередь, заметно...

  • Понятие наноиндустрии. Её роль в современном обществе

    Реферат >> Экономика

    Гонки ведущих экономик мира в исследовательских программах в сфере нанотехнологий . Российский рынок нанотехнологий находится на... глобальной конкурентоспособности. В современных условиях на лидирующие позиции в развитии нанотехнологий активно претендует и КНР...


  • Трудно представить себе будущее без нанотехнологий. Управление материей на уровне атомов и молекул открыло путь к большинству самых неимоверных открытий в химии, биологии и медицине. Но возможности нанотехнологий намного шире и до конца еще не изучены.

    10. Создание фильмов

    Если бы не изобретение растрового туннельного микроскопа (STM) в 1980 году, то сфера нанотехнологий осталась бы простой фантазией ученых. При помощи микроскопа ученые смогли изучать структуры материи способом, который не был бы возможным при использовании обычных оптических микроскопов, которые не могли обеспечить атомарную точность.
    Удивительные возможности растрового микроскопа были продемонстрированы исследователями компании IBM, когда создали “A Boy and His Atom” («Мальчик и его атом»), самый маленький в мире мультипликационный фильм. Его создали, двигая отдельные атомы материи по медной поверхности. На протяжении 90 секунд мальчик из молекул окиси углерода мог играть с мячом, танцевать и подпрыгивать на батуте. Весь сюжет фильма, состоящего из 202 кадров, происходил на площади размером в 1/1000 толщины человеческого волоса. Атомы ученые двигали при помощи электрически заряженного и очень острого стилуса, на кончике которого находился один атом в качестве наконечника. Подобный стилус не только способен отделить молекулу, но и передвинуть ее в нужное место и положение.


    За последнее десятилетие расходы на добычу нефти во всем мире выросли, но эффективность при этом не возросла. Дело в том, что когда добыча нефти консервируется нефтяной компанией в определенном месте, в недрах земли остается еще чуть меньше половины добытой ранее нефти. Но к этим залежам трудно и дорого добраться. К счастью, ученые из Китая придумали способ, как решить эту проблему путем улучшения уже существующего метода бурения. Оригинальность методики заключается в том, что в поры нефтеносной породы закачивается вода, которая под давлением выталкивает нефть наружу. Но в этой методике есть свои трудности, так как после вытеснения нефти наружу начнет выходить и закаченная ранее вода. И вот, чтобы не допустить такого эффекта, китайские ученые Пэн и Мин Юань Ли предложили идею смешения воды с наночастицами, которые смогут закрыть поры в горной породе, давая возможность воде выбирать более узкие проходы, чтобы выталкивать нефть.


    Изображение на экране компьютера передается пикселями – крошечными точками. Из-за количества таких точек, а не от их размера или формы, зависит качество изображения. Если увеличить количество пикселей на традиционных мониторах, то автоматически необходимо увеличивать и размер самого экрана, Ведущие производители как раз заняты тем, что продают экраны больших размеров потребителю.
    Понимая перспективы использования нанопикселей, исследователи из Оксфордского университета придумали способ, как создать пиксели в несколько сотен нанометров в диаметре. Во время эксперимента, когда ученые зажали между прозрачными электродами несколько слоев, 300 на 300 нанометров каждый, материала GST в качестве пикселя, то получили изображение высокого качества и высокой контрастности. Нанопиксели благодаря своим крошечным размерам будут намного практичнее традиционных и могут стать основой развития оптических технологий, например, умные очки, искусственная сетчатка и складной экран. Кроме этого, нанотехнологии не энергозатратны, так как способны обновлять только часть экрана для передачи изображения, на что требуется меньше энергии.


    Экспериментируя с наночастицами золота, ученые Калифорнийского университета заметили, что при растягивании или сжимании удивительным образом меняется цвет золотой нити от ярко-синего до фиолетового и красного. Им в голову пришла идея создать специальные датчики из наночастиц золота для индикации определенных процессов, которые тем или иным способом будут воздействовать на частицы. Например, если установить подобный датчик на мебели, то можно будет определить, сидит человек или спит.
    Чтобы создать такие датчики ученые добавляли наночастицы золота к пластичной пленке. В тот момент, когда на пленку воздействовали, она растягивалась, и наночастицы золота меняли цвет. При легком нажатии датчик становился фиолетовым, а при сильном – красным. Частицы серебра, например, тоже способны менять цвет, но на желтый. Такие датчики, несмотря на использование драгоценных металлов, не будут дорогими, так как их размер ничтожно мал.

    6. Зарядка телефона


    Какой бы модели или марки не был телефон или смартфон, iPhone или Samsung, у каждого из них есть существенный недостаток – ресурс аккумулятора и время его зарядки. Израильским ученым удалось создать аккумулятор, зарядка которого длится 30 секунд благодаря открытию в области медицины. Дело в том, что при изучении болезни Альцгеймера в Университете Тель-Авива ученые обнаружили способность молекул пептидов, которые вызывают болезнь, аккумулировать электрический заряд. Компания StoreDot, заинтересовалась этим открытием, так как давно работает в сфере практических применений нанотехнологий, и ее исследователи разработали технологию NanoDots для эффективной и более длительной работы батарейки смартфонов. Во время демонстрации на выставке достижений ThinkNext, организованной компанией Microsoft, аккумулятор телефона Samsung Galaxy S3 был заряжен меньше чем за минуту от 0 до 100%.

    5. Разумная доставка лекарств


    Некоторые медицинские компании, понимая угрозу распространения таких заболеваний, как рак, лечение которых часто становится неэффективным и несвоевременным, занялись исследованиями дешевых и эффективных способов борьбы с ними. Одна из таких компаний, Immusoft, заинтересовалась разработкой способов доставки лекарств в организм. Их революционный подход основан на том принципе, что человеческий организм при помощи иммунной системы сам способен вырабатывать нужное лекарство, тем самым будут экономиться миллиарды долларов на производство лекарств фармацевтическими компаниями и терапию. Иммунная система человека будет «перепрограммирована» на уровне генетической информации с помощью специальной капсулы наноразмера, в результате клетки начнут вырабатывать собственное лекарство. Метод пока представлен только в виде теоретических разработок, хотя эксперименты над мышами были успешными. В случае эффективности метод ускорит выздоровление и уменьшит затраты на лечение серьезных заболеваний.


    Электромагнитные волны, основа современных коммуникационных технологий, не являются надежным средством, так как любой электромагнитный импульс, может не только нарушить работу спутника связи, но и вывести его из строя. Неожиданное решение данной проблемы было предложено учеными Университета в Уорвике, Англия, и Университета в Йорке, Канада. Решение было подсказано ученым самой природой, а именно тем, как животные общаются на расстоянии при помощи запаха, которым они кодируют послание. Ученые тоже попробовали закодировать молекулы испаряющегося спирта, применив революционную коммуникационную технологию, и отправили сообщение, которое содержала следующее: «О, Канада».
    Для кодирования, передачи и приема подобного сообщения необходимо наличие передатчика и приемника. На передатчике набирается текстовое сообщение с помощью Arduino One (микроконтроллера для кодировки), который преобразует текст через двоичный код. Это послание распознается электронным распылителем со спиртом, который «1» он заменяет на один впрыск, а «0» - как пробел. Затем приемник с химическим сенсором улавливает спирт в воздухе и декодирует его в текст. Сообщение преодолело путь в несколько метров на открытом пространстве. Если технологию усовершенствовать, то человек будет способен передавать сообщения в труднодоступные места, например, туннели или трубопроводы, где электромагнитные волны бесполезны.


    Компьютерные технологии за последнее десятилетие сделали огромный скачок в развитии относительно мощности и емкости хранения информации. В свое время, 50 лет назад, такой скачок предсказывал Джеймс Мур. Его именем даже был назван соответствующий закон. Но современные физики, а именно Мичио Каку, заявляют, что закон прекратит свою работу, так как мощь и емкость вычислительной техники не соответствует существующим производственным технологиям.
    Ученые сейчас вынуждены искать альтернативные решения данной проблемы. Например, исследователи из Университета RMIT в Мельбурне во главе с Шаратой Шрирамой уже на пути создания таких устройств, которые будут имитировать работу человеческого мозга, а именно отдела хранения информации. В роли «мозга» выступает нанопленка, химически запрограммированная на хранение электрических зарядов по принципу «включен», «выключен». Пленка в 10000 раз тоньше человеческого волоса станет ключевым фактором в развитии революционных устройств хранения информации.

    2. Нанотехнологии на службе у искусства


    Перспективы, связанные с применением нанотехнологий в науке, уже давно восхищают общество, но возможности настолько велики, что не могут ограничиваться такими сферами, как медицина, биология и техника. Применение нанотехнологий в искусстве приведет к появлению наноискусства – создание крошечного мира под микроскопом, который люди будут воспринимать совершенно по-другому. Наноискусство предполагает связь между наукой и искусством. Ярким примером такой связи является портрет президента США под названием «Нанобама», созданный в 2008 году инженером-механиком из Мичиганского университета. Портрет выполнен из 150 нанотрубок, а размер его лица составляют менее 0,5 миллиметра.

    1. Новые рекорды


    Человек усердно работал над созданием чего-то большего по размеру, самого быстрого по скорости и самого сильного по силе и мощности. Когда же нужно создать нечто совсем маленькое, то без нанотехнологий здесь не обойтись. Например, благодаря нанотехнологиям была напечатана самая маленькая книга в мире, Teeny Ted From Turnip. Ее размеры составляют 70х100 микрометров. Сама книга состоит из 30 страниц, на которых размещены буквы из кристаллического кремния. Стоимость книги оценивают в 15 000 долларов, а чтобы ее прочитать понадобится не менее дорогой микроскоп.

    Медицина представляет собой самую захватывающую область для применения нанотехнологий. Многие методы лечения рака, которые разрабатываются в данный момент, построены на борьбе с опухолью на клеточном уровне. Исследователи показывают весьма многообещающие результаты использования наночастиц золота в лечении разных типов рака. Частицы отправляются прямиком в раковые клетки и нагреваются с помощью инфракрасного луча.

    Доставка наночастиц представляет собой самую большую проблему, связанную с применением их в медицине. Нужно доставить наночастицы в пораженные клетки, не повредив здоровые. Как только система доставки определится (что уже не легко само по себе), частицы должны помочь создать ряд новых неинвазивных методов лечения, которые справляются с опухолью без хирургической травмы.

    Одним из решений доставки наночастиц могут быть крошечные золотые звезды, которые разрабатываются в Северо-западном университете. Звездчатые частицы покрываются препаратом под названием ДНК-аптамер (молекула ДНК, которая может прикрепляться к нужным молекулярным мишеням). Нанозвезды ориентируются на протеины в раковых клетках. Протеины услужливо доставляют звездочки к ядру, и как только они прикрепляются к цели, выстрел из лазера высвобождает лекарство из нанозвезды, и оно начинает свое лечение ядра. У клетки не остается шансов.

    Каким бы ни был механизм доставки, нанотехнологии могут позволить докторам остановить рак мозга без физического вмешательства в череп пациента, или излечить рак легких без необходимости вскрывать чью-либо грудную клетку.

    Возможно, вы прикасаетесь к ним прямо сейчас


    Вне зависимости от того, какой тип компьютера или устройства вы используете для чтения этой статьи, вероятнее всего вы имеете дело с нанотехнологиями. Процессоры и компоненты памяти сделаны с использованием наноматериалов, которых полно на рынке, а на клавиатурах и мышках вы можете найти антимикробное покрытие.

    В ближайшем будущем мы вполне может увидеть фотонные кристаллы, которые облегчат нам чтение с экранов планшетов в дневное время, изменяя цвет отраженного солнечного света, а не полагаясь на свет, излучаемый устройством. Органические светоизлучающие диоды (OLED) уже стоят в очереди, чтобы наверняка заменить ЖК-дисплеи (LCD) в качестве универсального стандарта экранов смартфонов. Кроме того, тонкий слой наночастиц будет простым решением по защите смартфона от смерти от случайного падения в воду.

    Совсем скоро электроника будет работать в три раза дольше на одном заряде только потому, что крошечные волоски в виде нитевидных нанокристаллов будут встроены в батареи. Не так давно мы писали о том, что графеновые батареи вполне решат проблему зарядки смартфонов, а ведь графен - это прямое следствие исследования нанотехнологий.

    Возможно, вы уже носите их


    С начала 2000 годов индустрия моды заинтересовалась нанотехнологиями. И несмотря на то, что общественность не особо заинтересовалась возможностью зарядки смартфонов прямо от футболок, это направление тоже развивается. Идея пьезоэлектрических генераторов не лишена смысла. Представьте себе палатку, которая могла бы генерировать электричество из малейших дуновений ветра, чтобы вы зарядили свой фонарик. А как насчет лодки, которая получала бы электричество из каждого лоскутка своего паруса? Нанотехнологии, вшитые в ткань, обретают смысл.

    Тем не менее, не все идеи использования нанотехнологий были хорошо приняты. Много вопросов и негодования породили предложения использовать наночастицы для уничтожения бактерий, вызывающих неприятный запах одежды. Дизайнеры спортивной одежды поспешили с внедрением этого метода, как вдруг обнаружили, что частицы наносеребра убивают не только вредные, но и полезные бактерии (а потому не могут быть использованы при очищении воды, например), а также вызывает врожденные дефекты у рыб и других организмов.

    В конце 2011 года Агентство по охране окружающей среды США (EPA) разрешило использовать продукты с наносеребром, только если их безопасность не вызывает сомнений - решение, которое стало следствием направленного возмущения общественности. И если вас не пугает тот факт, что наносеребро используется в качестве пестицидов, EPA просит подумать вас дважды, чем носить одежду с этими элементами. Все-таки постирать белье раз в пару дней не так уж и сложно.

    Многое из этого уже есть в природе


    Хотите штаны, которые не впитывают воду ? Или как насчет пластыря, который позволит вам залезть на стеклянную стену? Купить подобные штаны в магазине нетрудно, но чтобы раскрыть человека-паука внутри себя, вам придется изрядно попотеть. И два этих примера нанотехнологий уже существуют в природе.

    Можете назвать это костюмом безопасности для лихого ездока. На протяжении многих лет текстильная промышленность пыталась разработать водонепроницаемые ткани. Но получилось это только тогда, когда они стали использовать нитевидные кристаллы. Если вы когда-либо видели, как капли дождя стекают по цветку лотоса - или другие примеры из-под носа - это работа природных нитевидных кристаллов. Лист покрыт нановолосками, которые поддерживают капли воды, не позволяя им впитываться или смачивать поверхность листка. Добавив нанотрубки в волокна одежды, производители могут создавать коттон, шерсть или синтетическую ткань, которая не впитывает воду.

    Что касается лазания по стеклу, этот продукт появился, благодаря разработкам Роберта Фулла (Robert Full) из Беркли. Изучая пальцы гекконов, исследователи выяснили, что каждый палец существа покрыт нановолосками, которые настолько малы и многочисленны, что используют силу Ван-дер-Ваальса (межмолекулярного сцепления), чтобы удерживаться на гладкой поверхности. Биолог Фулл вместе с другими инженерами воспроизвели механизм пальцев геккона в виде лапок, которые позволили альпинисту лазать по зданиям.

    Важным уроком здесь выступает то, что мы только-только приступили к изучению нанотехнологий, которые давно используются в живой природе. Теперь нужно научиться делать продукты, которые дополняют живой мир, а не повреждают его.

    Они могут быть в вашей пище и других продуктах


    Еда - это зона, которую многие люди сознательно оставляют неприступной для нанотехнологий. Многие люди специально платят за то, чтобы мясо, которое они едят, паслось на альпийских лугах и дышало только чистым воздухом. Поэтому неудивительно, что их бесит мысль о том, что они буду есть пищу, созданную с участием каких-то искусственных микрочастиц. Но прежде, чем вы начнете волноваться, давайте посмотрим на практическое применение нанотехнологий в пищевой промышленности.

    Упаковка и хранение . Нанотехнологичные упаковки позволят вам хранить пищу дольше, создавая герметично уплотненные стенки, либо вообще убивающие вредные бактерии, посягающие на ваш обед. Посмотрите вокруг. На рынке полно холодильников, использующих покрытие из наночастиц серебра, которое убивает бактерии, да и многоразовые контейнеры тоже не гнушаются использовать этот прием.

    Цвет, запах и вкус . Представьте, что вкус, запах и цвет еды можно будет изменить на молекулярном уровне. Это позволит создавать невероятно полезную еду в приятной оболочке (представьте, что пища из Макдональдса будет полезнее овсянки). Тем не менее, скептики даже и слышать не хотят о том, что пища будет модифицироваться искусственным путем. А зря.

    Улучшение препаратов . Возьмем, к примеру, диабетиков. Нанотрубки в один прекрасный день можно будет вколоть всего один раз, а наночастицы самостоятельно будут следить за уровнем сахара в крови, выдавая порцию инсулина, когда нужно. Пока медицина не дошла до таких высот, но в один прекрасный день, только представьте, только один укол стабилизирует состояние хронических больных, от ВИЧ-инфицированных до людей с мигренью.

    В конце концов, вспомните этих замечательных вашего смартфона. Хотели бы не обниматься с ними, а избавиться от них? Ведь этими же пальцами вы берете печенье и отправляете в рот. Вместе с живностью. Брр.

    Довольно сложно представить будущее без нанотехнологий. Манипуляции материей на атомном и субмолекулярном уровнях проложили путь для крупных прорывов в химии, биологии и медицине. Тем не менее уже сейчас применение нанотехнологий иногда превосходит даже самые любопытные наши фантазии и реалии.

    Фильмы

    Без изобретения сканирующего туннельного микроскопа (STM) в 1980-х годах, область нанотехнологий могла остаться научной фантастикой. С атомарной точностью STM физики смогли изучать структуру таким образом, каким не удавалось с обычными оптическими микроскопами.

    Удивительный потенциал STM был продемонстрирован учеными IBM, когда они создали «Мальчик и его атом», самый маленький в мире анимационный фильм. Он был создан путем перемещения отдельных атомов на поверхности меди.

    90-секундный фильм изображает мальчика из молекул окиси углерода, играющего с мячом, танцующего и прыгающего на батуте. Созданная из 202 кадров анимация разворачивается на площади, равной 1/1000 размера одного человеческого волоса. Чтобы сделать фильм, ученые использовали уникальную особенность STM: электрически заряженный и очень острый стилус с одним атомом в роли наконечника. Стилус может определять точное положение молекул углерода на поверхности анимации (в данном случае - на листе меди). Также его можно использовать для создания изображений молекул и перемещения их на новые позиции.

    Нефтедобыча

    Глобальные расходы на разведку месторождений нефти выросли в геометрической прогрессии за последние десять лет. Тем не менее эффективность добычи нефти остается серьезной проблемой. Когда нефтяные компании закрывают скважины, из них извлекается менее половины нефти. Остальная остается в ловушке в скале, потому что ее будет слишком дорого добывать. К счастью, благодаря нанотехнологиям ученые Китая нашли способ обойти это.

    Решение было в улучшении существующего метода бурения. Оригинальная методика предполагает введение воды в поры породы, в которой находится нефть. Это вытесняет нефть и выводит ее наружу. Тем не менее у этого метода есть свои ограничения. В определенный момент вместо нефти начинает выходить вода.

    Чтобы предотвратить это, китайские исследователи Пэн и Мин Юань Ли пришли к идее вливать воду с наночастицами, которые будут закрывать переходы между порами породы. Вода будет выбирать самые узкие пути в порах, содержащих нефть, и выталкивать ее наружу. Успешно показав себя в испытаниях в Китае, этот метод повысил эффективность нефтедобычи, доставая до 50% нефти, которая в ином случае была вне досягаемости.

    Дисплеи с высоким разрешением

    Изображения на экранах компьютеров представлены с помощью крошечных точек - пикселей. Независимо от их размеров и форм, количество пикселей на экране остается определяющим фактором качества изображения. Однако, в случае с обычными , большее число пикселей означает большие и громоздкие экраны - что не совсем удобно.

    Пока компании заняты продажей гигантских экранов потребителям, ученые из Оксфордского университета обнаружили способ создания пикселей в несколько сотен нанометров в поперечнике. Этого можно достичь, используя свойства материала, изменяющего фазу, под названием GST. В эксперименте ученые использовали набор семинанометровых слоев GST, зажатых между прозрачными электродами. Каждый слой - всего 300 на 300 нанометров - выступает как пиксель, который можно включать и выключать электрическим путем. Пропуская электрический ток через слой, ученые смогли получить картинку с высоким качеством и контрастностью.

    Нанопиксели будут служить для различных целей, когда традиционные пиксели станут непрактичными. К примеру, их крошечные размеры и толщина сделают их отличным выбором для таких технологий, как умные очки, складные экраны и искусственная сетчатка. Еще одним преимуществом нанопиксельных дисплеев является их низкое энергопотребление. В отличие от существующих дисплеев, которые постоянно обновляют все пиксели для формирования изображений, слой на основе GST обновляет только часть дисплея, что на деле экономит энергию.

    Краска, меняющая цвет

    Во время экспериментов с нитями наночастиц золота ученые из Калифорнийского университета наткнулись на удивительную вещь. Они заметили, что цвет золота меняется, когда нить растягивается или сжимается, переходя из ярко-синего в фиолетовый и затем в красный. Эксперимент вдохновил ученых на создание датчиков из наночастиц золота, которые меняют цвет, когда на них оказывается давление.

    Для производства таких датчиков наночастицы золота добавлялись к гибкой полимерной пленке. Когда пленка подвергается давлению, она растягивается и вызывает изменение цвета частиц. Легкое нажатие превращает датчик в фиолетовый, а сильное - в красный. Ученые заметили это интересное свойство не только у частиц золота, но и у частиц серебра, которые меняют свой цвет на желтый при растяжении.

    Такие датчики могут служить для разных целей. К примеру, их можно включать в мебель, диваны или кровати, чтобы определить, сидит человек или спит. Несмотря на то, что датчик сделан из золота, его малый размер помогает преодолеть проблему стоимости.

    Зарядка телефонов

    Будь то iPhone, Samsung или другой телефон, каждый смартфон, покидающий производственную линию, обладает двумя серьезными недостатками: время жизни батареи и время ее зарядки. И хотя первая проблема остается насущной, ученые из города Рамат-Ган в Израиле смогли решить вторую проблему, создав аккумулятор, который заряжается за 30 секунд.

    Этот прорыв был тесно связан с проектом по изучению болезни Альцейгмера силами ученых из Университета Тель-Авива. Ученые обнаружили, что молекулы пептида, которые сокращают нейроны мозга и вызывают заболевание, обладают высокой емкостью (способностью сохранять электрический заряд). Это открытие было взято на заметку StoreDot, компании, которая пытается превратить нанотехнологии в целевые потребительские продукты. При помощи ученых, StoreDot разработала NanoDots - технологию, которая использует способность пептидов для улучшения времени жизни батареи смартфонов. Компания продемонстрировала свою технологию на мероприятии ThinkNext от Microsoft. На примере телефона Samsung Galaxy S3 батарея была заряжена с нуля до максимума меньше чем за минуту.

    Хитроумная доставка лекарств

    Лечение заболеваний вроде рака может быть слишком дорогим, а в некоторых случаях - запоздалым. К счастью, несколько медицинских компаний по всему миру исследуют дешевые и эффективные способы лечения подобных болезней. Среди них и Immusoft, компания, которая планирует осуществить революцию в сфере доставки лекарств в наши тела.

    Вместо того, чтобы тратить миллиарды долларов на лекарства и терапевтические программы, Immusoft считает, что наши тела сами могут вырабатывать нужные лекарства. При помощи иммунной системы, клетки пациента могут быть изменены и снабжены новой генетической информацией, которая позволит им вырабатывать собственные лекарства. Генетическую информацию можно доставить с помощью капсул наноразмера, вводимых в организм.

    Новый метод пока не прошел испытание на людях. Тем не менее Immusoft и другие учреждения сообщили об успешных экспериментах, проведенных на мышах. Если метод докажет свою эффективность на людях, он значительно сократит время лечения и затраты на терапию сердечно-сосудистых заболеваний и других болезней.

    Молекулярная коммуникация

    При определенных условиях электромагнитные волны, душа глобальной связи, становятся непригодными для использования. Подумайте об электромагнитном импульсе, который может вывести из строя спутник связи, и тогда любая форма технологии, которая зависит от него, окажется бесполезной. Мы хорошо знакомы с таким сценарием из апокалиптических фильмов. Также этот вопрос на протяжении многих лет изучали ученые из Университета Уорвика в Соединенном Королевстве и в Йоркском университете Канады, прежде чем прийти к неожиданному решению вопроса.

    Ученые наблюдали за тем, как некоторые виды животных, в частности насекомых, используют феромоны для общения на больших расстояниях. Собрав данные, ученые разработали коммуникационный метод, в котором сообщения кодируются в молекулах испаряющегося спирта. Они успешно продемонстрировали новый метод, используя спирт в качестве химических сигналов, и отправили первое сообщение, которое расшифровывалось как «О, Канада».

    Метод включал использование двух устройств, передатчика и приемника, которые кодировали и посылали и получали сигнал соответственно. Можно набрать текстовое сообщение на передатчике, используя Arduino One (микроконтроллер с открытым исходным кодом). Затем контроллер преобразует текст в двоичный код, который считывается электронным распылителем со спиртом. После считывания кода распылитель заменяет «1» на впрыск, а «0» оставляет как пробел. В воздухе спирт улавливается приемником в воздухе, который содержит химический сенсор и микроконтроллер. Затем данные снова переводятся в текст.

    Сообщение удалось отправить на несколько метров по открытому пространству. Такой метод может быть полезен в средах типа подземных туннелей или трубопроводов, где электромагнитные волны становятся бесполезными.

    Накопитель данных

    За последние несколько десятилетий компьютеры пережили экспоненциальный рост в вычислительной мощности и емкости хранения. Это явление было точно предсказано Джеймсом Муром более 50 лет назад и позже стало известно как закон Мура. Тем не менее многие ученые - включая физика Мичио Каку - считают, что закон Мура однажды прекратит работать. Это связано с тем, что вычислительная мощь компьютеров не может идти в ногу по экспоненте с существующими производственными технологиями.

    Хотя Каку акцентировал внимание на вычислительной мощности, то же самое в равной мере относится к емкости. К счастью, это не конец. Команда ученых из Университета RMIT в Мельбурне в данный момент ищет альтернативы. Под руководством Шарата Шрирама, команда ученых находится на пороге создания устройств хранения данных, которые имитируют метод хранения информации человеческим мозгом. Первый шаг ученых заключался в создании нанопленки, которая химически запрограммирована на хранение электрических зарядов в состоянии «включен» и «выключен». Пленка, которая тоньше человеческого волоса в 10 000 раз, может стать краеугольным камнем для разработки устройств памяти, которые имитируют работу нейронных сетей мозга.

    Наноискусство

    Перспективное развитие нанотехнологий восхищает научное сообщество. Тем не менее достижения в области нанотехнологий не ограничиваются медициной, биологией и техникой. Наноискусство - развивающаяся область, которая позволяет нам увидеть крошечный мир под микроскопом с совершенно новой точки зрения.

    Как следует из названия, наноискусство - это сочетание искусства и нанонауки, в котором практикуется небольшое число ученых и художников. Среди них Джон Харт, инженер-механик из Мичиганского университета, создавший нанопортрет президента. Портрет под названием «Нанобама» был создан для президента, когда он выступал кандидатом в ходе президентских выборов 2008 года. Каждая грань портрета составляет менее половины миллиметра, а весь портрет сделан из 150 нанотрубок. Остается только вопрос времени, когда такой портрет можно будет распечатать.

    Новые рекорды

    Человечество всегда стремилось создавать вещи сильнее, быстрее и больше. Но когда речь заходит о самых маленьких вещах, в игру вступают нанотехнологии. Среди самых маленьких вещей, созданных с использованием нанотехнологий, есть книга под названием Teeny Ted From Turnip, которая в настоящее время считается самой маленький в мире напечатанной книгой. По размерам книга всего 70 на 100 микрометров и наполнена буквами, вырезанными на 30 страницах из кристаллического кремния. Правда, стоит такая книжка немало - более 15 000 долларов. К тому же для ее прочтения понадобится электронный микроскоп, тоже удовольствие не из дешевых.

    По материалам listverse.com


    Нет похожих постов

    Тема: Нанотехнологии в современном мире 31.10

    Цели урока

    Образовательные :

      ввести новое понятие нанотехнология.

      продолжить формирование умений наблюдать, делать выводы, выделять главное.

    Развивающие :

      развивать наблюдательность, внимание, речь, память.

      развивать интерес и логическое мышление путем решаемых проблем.

      развивать интерес к поиску дополнительной информации через Интернет.

    Воспитательные :

      продолжить развивать кругозор учащихся.

      воспитывать умение работать в коллективе, осуществлять самостоятельную деятельность.

    Тип урока : изучение нового материала

    Вид урока: урок-конференция

    Ход урока

      Организационный момент

    Создание коллаборативной среды с помощью стратегии «Атом, молекула»

    2. Мотивационный этап

    Ознакомление с планом конференции.

    История возникновения нанотехнологий

    Что такое нанотехнология?

    Нанотехнология в космосе

    Нанотехнология в медецине

    Нанотехнология в сельском хозяйстве и промышленности

    3. Изучение нового материала

    1 пара

    1. История возникновений нанотехнологий

    Дедушкой нанотехнологий можно считать греческого философа Демокрита. Он впервые использовал слово “атом” для описания самой малой частицы вещества. В течение двадцати с лишним веков люди пытались проникнуть в тайну строения этой частицы. Решение этой непосильной для многих поколений физиков задачи стало возможным в первой половине ХХ века после создания немецкими физиками Максом Кноллом и Эрнстом Руской электронного микроскопа, который впервые позволил исследовать нанообъекты.

    Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана «Там внизу много места» (англ. «There’s Plenty of Roo at the Bottom»), сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

    Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий будут все больше влиять на работу механизма. Последний этап - полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле - таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота - невозможность создания механизма из одного атома.

    2 пара

    2. Что такое нанотехнологии

    Появившись совсем недавно, нанотехнологии все активней входят в область научных исследований, а из нее – в нашу повседневную жизнь. Разработки ученых все чаще имеют дела с объектами микромира, атомами, молекулами, молекулярными цепочками. Создаваемые искусственно нанообъекты постоянно удивляют исследователей своими свойствами и обещают самые неожиданные перспективы своего применения.

    Основной единицей измерения в нанотехнологических исследованиях является нанометр – миллиардная доля метра. В таких единицах измеряются молекулы и вирусы, а теперь и элементы компьютерных чипов нового поколения. Именно в наномасштабе протекают все базовые физические процессы, определяющие макровзаимодействия.

    Создание сканирующего туннельного микроскопа в 1980 году позволило ученым не только различать отдельные атомы, но и двигать их и собирать из них конструкции, в частности, компоненты будущих наномашин – двигатели, манипуляторы, источники питания, элементы управления. Создаются нанокапсулы для прямой доставки лекарств в организме, нанотрубки в 60 раз прочней стали, гибкие солнечные элементы и множество других удивительных устройств.

    Другим хорошо известным наноэлементом является углеродная нанотрубка. Это одноатомный слой углерода, свернутый в цилиндр диаметром в несколько нанометров. Впервые эти объекты был получены в 1952 году, но лишь в 1991 году они привлекли внимание ученых. Прочность этих трубок превышает прочность стали в десятки раз, они выдерживают нагрев до 2500 градусов и давление в тысячи атмосфер. Еще одним наноматериалом является графен – двумерный углеродный слой, плоскость, состоящая из атомов углерода. Этот материал был впервые получен русскими физиками, работающими в Англии. Многие ученые полагают, что этот материал, обладающий уникальными свойствами, в будущем станет основой микропроцессоров, вытеснив современные полупроводники. Кроме того, этот материал также невероятно прочен.

    Все эти наноэлементы все чаще находят применение в различных областях технологии – от медицины до космических исследований.

    . 3 пара

    3. Нанотехнологии в космосе

    Создана система микроспутников, она менее уязвима при попытках ее уничтожения. Одно дело сбить на орбите махину массой в несколько сот килограммов, а то и тонн, сразу выведя из строя всю космическую связь или разведку, и другое - когда на орбите находится целый рой микроспутников. Вывод из строя одного из них в этом случае не нарушит работу системы в целом. Соответственно могут быть снижены требования к надежности работы каждого спутника.

    Молодые ученые считают, что к ключевым проблемам микроминиатюризации спутников среди прочего следует отнести создание новых технологий в области оптики, систем связи, способов передачи, приема и обработки больших массивов информации. Речь идет о нанотехнологиях и наноматериалах, позволяющих на два порядка снизить массу и габариты приборов, выводимых в космос. Например, прочность наноникеля в 6 раз выше, чем обычного никеля, что дает возможность при использовании его в ракетных двигателях уменьшить массу сопла на 20-30%. Уменьшение массы космической техники решает множество задач: продлевает срок нахождения аппарата в космосе, позволяет ему улететь дальше и унести на себе больше всякой полезной аппаратуры для проведения исследований. Одновременно решается задача энергообеспечения. Миниатюрные аппараты скоро будут применяться для изучения многих явлений, например, воздействия солнечных лучей на процессы на Земле и в околоземном пространстве.

    Сегодня космос - это не экзотика, и освоение его - не только вопрос престижа. В первую очередь, это вопрос национальной безопасности и национальной конкурентоспособности нашего государства. Именно развитие сверхсложных наносистем может стать национальным преимуществом страны. Как и нанотехнологии, наноматериалы дадут нам возможность серьезно говорить о пилотируемых полетах к различным планетам Солнечной системы. Именно использование наноматериалов и наномеханизмов может сделать реальностью пилотируемые полеты на Марс, освоение поверхности Луны. Другим чрезвычайно востребованным направлением развития микроспутников является создание дистанционного зондирования Земли (ДЗЗ). Начал формироваться рынок потребителей информации с разрешением космических снимков 1 м в радиолокационном диапазоне и менее 1 м - в оптическом (в первую очередь такие данные используются в картографии).

    Ожидается, что уже в 2025 году появятся первые ассемблеры, созданные на основе нанотехнологий. Теоретически возможно, что они будут способны конструировать из готовых атомов любой предмет. Достаточно будет спроектировать на компьютере любой продукт, и он будет собран и размножен сборочным комплексом нанороботов. Но это всё ещё самые простые возможности нанотехнологий. Из теории известно, что ракетные двигатели работали бы оптимально, если бы могли менять свою форму в зависимости от режима. Только с использованием нанотехнологий это станет реальностью. Конструкция более прочная, чем сталь, более легкая, чем дерево, сможет расширяться, сжиматься и изгибаться, меняя силу и направление тяги. Космический корабль сможет преобразиться примерно за час. Нанотехника, встроенная в космический скафандр и обеспечивающая круговорот веществ, позволит человеку находиться в нем неограниченное время. Нанороботы способны воплотить также мечту фантастов о колонизации иных планет, эти устройства смогут создать на них среду обитания, необходимую для жизни человека. Станет возможным автоматическое строительство орбитальных систем, любых строений в мировом океане, на поверхности земли и в воздухе (эксперты прогнозируют это к 2025 гг.).

    4 пара

    4. Нанотехнологии в медицине

    Последние успехи нанотехнологий, по словам ученых, могут оказаться весьма полезными в борьбе с раковыми заболеваниями. Разработано противораковое лекарство непосредственно к цели - в клетки, пораженные злокачественной опухолью. Новая система, основанная на материале, известном как биосиликон. Наносиликон обладает пористой структурой (десять атомов в диаметре), в которую удобно внедрять лекарства, протеины и радионуклиды. Достигнув цели, биосиликон начинает распадаться, а доставленные им лекарства берутся за работу. Причем, по словам разработчиков, новая система позволяет регулировать дозировку лекарства.

    На протяжении последних лет сотрудники Центра биологических нанотехнологий работают над созданием микродатчиков, которые будут использоваться для обнаружения в организме раковых клеток и борьбы с этой страшной болезнью.

    Новая методика распознания раковых клеток базируется на вживлении в тело человека крошечных сферических резервуаров, сделанных из синтетических полимеров под названием дендримеры (от греч. dendron - дерево). Эти полимеры были синтезированы в последнее десятилетие и имеют принципиально новое, не цельное строение, которое напоминает структуру кораллов или дерева.

    Оказавшись внутри тела, эти крошечные датчики проникнут в лимфоциты - белые кровяные клетки, обеспечивающие защитную реакцию организма против инфекции и других болезнетворных факторов. При иммунном ответе лимфоидных клеток на определенную болезнь или условия окружающей среды - простуду или воздействие радиации, к примеру, - белковая структура клетки изменяется. Каждый наносенсор, покрытый специальными химическими реактивами, при таких изменениях начнет светиться.

    Чтобы увидеть это свечение, ученые собираются создать специальное устройство, сканирующее сетчатку глаза. Лазер такого устройства должен засекать свечение лимфоцитов, когда те один за другим проходят сквозь узкие капилляры глазного дна. Если в лимфоцитах находится достаточное количество помеченных сенсоров, то для того, чтобы выявить повреждение клетки, понадобиться 15-секундное сканирование, заявляют ученые.

    стираться. На сегодняшний день создан лишь один примитивный шагающий ДНК-робот.

    Наномедицина представлена следующими возможностями:

    1. Лаборатории на чипе, направленная доставка лекарств в организме.

    2. ДНК – чипы (создание индивидуальных лекарств).

    3. Искусственные ферменты и антитела.

    4. Искусственные органы, искусственные функциональные полимеры (заменители органических тканей). Это направление тесно связано с идеей искусственной жизни и в перспективе ведёт к созданию роботов обладающих искусственным сознанием и способных к самовосстановлению на молекулярном уровне. Это связано с расширением понятия жизни за рамки органического

    5. Нанороботы-хирурги (биомеханизмы осуществляющие изменения и требуемые медицинские действия, распознавание и уничтожение раковых клеток). Это является самым радикальным применением нанотехнологии в медицине будет создание молекулярных нанороботов, которые смогут уничтожать инфекции и раковые опухоли, проводить ремонт повреждённых ДНК, тканей и органов, дублировать целые системы жизнеобеспечения организма, менять свойства организма.

    Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологии ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.

    В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нанороботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью. В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

    Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.

    5 пара

    5. Нанотехнологии в сельском хозяйстве и промышленности

    Нанотехнологии способны произвести революцию в сельском хозяйстве. Молекулярные роботы смогут производить пищу, «освободив» от этого растения и животных. С этой целью они будут использовать любое «подножное сырье»: воду и воздух, где есть главные нужные элементы – углерод, кислород, азот, водород, алюминий и кремний, а остальные, как и для «обычных» живых организмов, потребуются в микроколичествах. К примеру, теоретически возможно производить молоко прямо из травы, минуя промежуточное звено – корову. Человеку не придется убивать животных, чтобы полакомиться жареной курочкой или кусочком копченого сала. Предметы потребления будут производиться «прямо на дому»

    Наноеда (nanofood) – термин новый, малопонятный и неказистый. Еда для нанолюдей? Очень маленькие порции? Еда, сработанная на нанофабриках? Нет, конечно. Но всё же это - любопытное направление в пищевой отрасли. Оказывается, наноеда – это целый набор научных идей, которые уже находятся на пути к реализации и применению в промышленности. Во-первых, нанотехнологии могут предоставить пищевикам уникальные возможности по тотальному мониторингу в реальном времени качества и безопасности продуктов непосредственно в процессе производства. Речь идёт о диагностических машинах с применением различных наносенсоров или так называемых квантовых точек, способных быстро и надёжно выявлять в продуктах мельчайшие химические загрязнения или опасные биологические агенты. И производство пищи, и её транспортировка, и методы хранения могут получить свою порцию полезных инноваций от нанотехнологической отрасли. По оценке учёных, первые серийные машины такого рода появятся на массовых пищевых производствах в ближайшие четыре года. Но на повестке дня и более радикальные идеи. Вы готовы проглотить наночастицы, которые невозможно увидеть? А что если наночастицы будут целенаправленно использоваться для доставки к точно выбранным частям организма полезных веществ и лекарств? Что если такие нанокапсулы можно будет внедрять в пищевые продукты? Пока ещё никто не употреблял наноеду, но предварительные разработки уже идут. Специалисты говорят, что съедобные наночастицы могут быть сделаны из кремния, керамики или полимеров. И разумеется - органических веществ. И если в отношении безопасности так называемых "мягких" частиц, сходных по строению и составу с биологическими материалами – всё ясно, то "твёрдые" частицы, составленные из неорганических веществ – это большое белое пятно на пересечении двух территорий - нанотехнологии и биологии. Учёные ещё не могут сказать, по каким маршрутам подобные частицы будут путешествовать в теле, и где в результате остановятся. Это ещё предстоит выяснить. Зато некоторые специалисты уже рисуют футуристические картины преимуществ наноеды. Помимо доставки ценных питательных веществ к нужным клеткам. Идея заключается в следующем: каждый покупает один и тот же напиток, но затем потребитель сможет сам управлять наночастицами так, что на его глазах будут меняться вкус, цвет, аромат и концентрация напитка.

    4. Закрепление нового материала

    Создание проекта «Наш НАНОмир!»

    Рефлексия

    С помощью стратегии «Три М»

    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png